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1 Basic Theory

1.1 Fields

Definition 1.1.1. Let K be a field. An absolute value on K is a function | · | : K → R≥0
such that

1. |x| = 0 if and only if x = 0

2. |xy| = |x||y| for all x, y ∈ K

3. |x+ y| ≤ |x|+ |y|

In this case, we refer to K as a valued field.

Example 1.1.2. Q,R,C with |z| =
√
zz.

Remark. An absolute value defines a metric d(x, y) = |x− y| and thus induces a topology
on K.

Definition 1.1.3. Let K be a field and | · |, | · |′ absoute values on K. We say that | · | and
| · |′ are equivalent if they induce the same topology on K.

Proposition 1.1.4. Let K be a field and | · |1, | · |2 absolute valeis on K. Then the following
are equivalent

1. | · |1 and ·|2 are equivalent.

2. |x|1 ≤ 1 ⇐⇒ |x|2 ≤ 1 for all x ∈ K.

3. There exists s > 0 such that |x|1 = |x|s2 for all xinK.

Proof.

(1) =⇒ (2): Suppose that | · |1 and | · |2 are equivalent. Then these absolute values generate
the same topology on K so that any sequence that converges to a limit with respect to
| · |1 must also converge to the same limit with respect to | · |2. Let x ∈ K be such that
|x|1 ≤ 1. Then |xn|1 = |x|n1 and so limn→∞ |xn|1 = 0. But then we must also have that
limn→∞ |xn|2 = 0. Hence |xn|2 = |x|n2 < 1 for all n ≥ 1 and, in particular, |x|2 < 1.

(2) =⇒ (3): We first observe that the hypothesis |x|1 ≤ 1 ⇐⇒ |x|2 ≤ 1 implies that
|x|1 > 1 ⇐⇒ |x|2 > 1.

Now, since | · |1 and | · |2 induce the same topology on K, given 0, 1 6= a ∈ K there exists
an s > 0 such that |a|1 = |a|s2. We claim that, in fact, for all x ∈ K we have |x|1 = |x|s2. To
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this end, let 0, 1 6= x ∈ K. Then there exists t ∈ R such that |x|1 = |a|t1. Now fix a/b ∈ Q
such that a/b < t. Then

|a|m/n1 < |x|1 =⇒ |am|1 < |xn|1

=⇒
∣∣∣∣amxn

∣∣∣∣
1

< 1

=⇒
∣∣∣∣amxn

∣∣∣∣
2

< 1

=⇒ |a|m/n2 < |x|2

Similarly, if m/n > t, we can show that |a|m/n2 > |x|2. We thus have

|a|m/n2 < |x|2 < |a|m/n2

Since |x|2 is continuous, the Sandwich Theorem then implies that |x|2 = |a|t2. But then

|x|1 = |a|t1 = |a|s2t = |x|s2

(3) =⇒ (1): Now suppose that there exists s > 0 such that for all x ∈ K we have |x|1 = |x|s2.
Let B1(x, r) be the open ball of radius r, centered at x with respect to | · |1 and similarly for
B2(x, r). Then

B2(x, r) = { y ∈ K | |x− y|2 < r }
= { y ∈ K | |x− y|1/s1 < r }
= { y ∈ K | |x− y|1 < rs }
= B1(x, r

s)

Now let U be an open set of the metric topology on K with respect to | · |1. Fix u ∈ U . We
claim that we can excise an open | · |2-ball around u. Indeed, we can always find an r > 0
such that x ∈ B1(x, r) ⊆ U . But by the above calculation, x ∈ B2(x, r

1/s) ⊆ U and hence
U is also open in the metric topology on K with respect to | · |2. By symmetry, we can
always excise an open | · |1-ball around any point in an | · |2-open set so that the two metric
topologies coincide.

Definition 1.1.5. Let (K, | · |) be a valued field. We say that | · | is non-archimedean if it
satisfies the strong triangle inequality |x+ y| ≤ max{|x|, |y|} for all x, y ∈ K. The induced
metric is also referred to as non-archimedean and the corresponding ultrametric inequality
d(x, z) ≤ max{d(x, y), d(y, z)}. If this is not the case then | · | is said to be archimedean.

Proposition 1.1.6. Let K be a non-archimedean valued field, x ∈ K and r ∈ R>0. Then
any point in the closed ball around x of radius r, B[x, r] is a centre.

Proof. Fix a z ∈ B[x, r] and let y ∈ B[z, r]. Then

|x− y| = |x− z + z − y| ≤ max{|x− z|, |z − y|} ≤ max{r, r} = r

and so y ∈ B[x, r] whence B[z, r] ⊆ B[x, r]. By symmetry we then have that B[x, r] =
B[z, r].
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Proposition 1.1.7. Let K be a non-archimedean valued field. Then

O = {x | |x| ≤ 1 }

is an open subring of K called the valuation ring of K with unit group given by O× =
{x | |x| = 1 }. Furthermore, given any r ∈ (0, 1] the sets {x | |x| < r } and {x | |x| ≤ r }
are open ideals of O.

Proof. It follows immediately from Proposition 1.1.6 that we can can always excise an open
ball around any point of O whence O and the other sets are open. We now show that O is a
subring of K. It is clear that |1| = |−1| = 1 whence 1,−1 ∈ O. Now suppose that x, y ∈ O.
Then |x + y| ≤ max{|x|, |y|} ≤ 1 which implies that x, y ∈ O. Similarly, |xy| = |x||y| ≤ 1
and so also xy ∈ O. Hence O is a subring of K.

Now suppose that x 6= 0. Then

x ∈ O× ⇐⇒ |x|, |x|−1 ≤ 1 ⇐⇒ |x| = 1

and so O× = {x | |x| = 1 }. The fact that the other sets are ideals are checked by a similar
process.

Proposition 1.1.8. Let K be a non-archimedean valued field and (xn) ⊆ K a sequence. If
xn − xn−1 → 0 then (xn) is Cauchy. Furthermore, if K is complete then

1. (xn) converges.

2. if xn → 0 then
∑∞

n=0 xn converges.

Proof. Fix ε > 0 and suppose there exists N ∈ N such that |xn − xn − xn−1| < ε for all
n ≥ N . Choose m ≥ n. Then

|xm − xn| = |xm − xm−1 + xm−1 − xm−1 + xm−2 + xm−2 + · · · − xn|
≤ max{|xm − xm−1|, . . . , |xm+1 − xn|}
< ε

whence (xn) is Cauchy. The rest follows immediately.

1.2 Rings

Definition 1.2.1. Let R ⊆ S be rings. We say that s ∈ S is integral over R if there exists
a monic f(X) ∈ R[X] such that f(s) = 0.

Remark. Recall the following from linear algebra. Let A = (aij) ∈ Mn×n(R). The adjoint
matrix A∗ = (a∗ij) of A is defined by a∗ij = (−1)ij det(Aij) where Aij is the (n− 1)× (n− 1)
matrix obtained from A by deleting the ith column and jth row. Then A∗A = AA∗ =
det(A)1n.

Proposition 1.2.2. Let R ⊆ S be rings. Then s1, . . . , sn ∈ S are integral over R if and
only if R[s1, . . . , sn] ⊆ S is a finitely generated R-module.

Proof. First suppose that s1, . . . , sn are all integral over R. Note that

R ⊆ R[s1] ⊆ R[s1, s2] ⊆ · · · ⊆ R[s1, . . . , sn] ⊆ S
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with si integral over R[s1, . . . , si−1]. By induction, it thus suffices to prove the case where
n = 1. Let s = s1 and fix some monic f(X) ∈ R[X] such that f(s) = 0. Given g(X) ∈ R[X]
the division algorithim for polynomials implies that there exists q, r ∈ R[X] such that
g(X) = f(X)q(X) + r(X) where deg r < deg f . Observe that g(s) = f(s)q(s) + r(s) = r(s)
whence 1, s, . . . , sdeg(f)−1 generate R[s] as an R-module.

Now assume that R[s1, . . . , sn] is a finitely generated R-module and fix some generators
t1, . . . , td ∈ R[s1, . . . , sn]. Let b ∈ R[s1, . . . , sn]. Then there exists some aij ∈ R such that

bti =
d∑
j=1

aijtj

Letting A = (aij), we then have that (bI − A)t = 0. Multiplying through by (bI − A)∗

yields det(bI − A)tj = 0 for all j. Now, we can always find cj ∈ R such that 1 =
∑d

j=1 cjtj.
Multiplying this by det(bI − a) we get

det(bI − A) =
d∑
j=1

det(bI − A)cjtj

This is just equal to 0 and is monic when expanding out the definition of det(XI −A) so b
is integral over R.

Corollary 1.2.3. Let R and S be rings. Suppose that s1, s2 ∈ S are integral over R. Then
s1 + s2, s1s2 are also integral over R. In particular, the set of all elements in S that are
integral over R is a ring called the integral closure of R in S.

Proof. Suppose that s1, s2 ∈ S are integral over R. Then by the Proposition, R[s1, s2] is a
finitely generated R-module. Using the Proposition in the opposite direction, it then follows
that s1 + s2, s1s2 are integral over R.

1.3 Topological Rings

Definition 1.3.1. Let R be a ring and τ a topology of R. We say that τ is a ring topology
if R’s addition and multiplication operations are continuous maps. In this case, we refer to
R as a topological ring.

Example 1.3.2. Let K be a valued field. Then K is a topological ring with the topology
induced from the metric coming from the absolute value.

Definition 1.3.3. Let R be a ring and I / R an ideal. A subset U ⊆ R is called I-adically
open if for all x ∈ U there exists an n ≥ 1 such that x+ In ⊆ U .

Proposition 1.3.4. Let R be a ring and I / R be an ideal. The set of all I-adically open
sets of R forms a topology on R called the I-adic topology.

Proof. It is vacuously true that ∅ is I-adically open. It is also immediately obvious from
the definition that R is I-adically open. Let U, V ⊆ R be I-adically open subsets. Then it
is immediate that their union is I-adically open. To see that their intersection is also open,
fix an x ∈ U ∩ V . Then there exists m,n ≥ 1 such that x + In ⊆ U and x + Im ⊆ V . It
follows that x+ Imax{m,n} ⊆ U ∩ V .

Proposition 1.3.5. Let R be a ring and I / R an ideal. Then the I-adic topology on R is
a ring topology.
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Proof. Fix (x, y) ∈ R×R. We want to show that the map

+ : R×R→ R

(a, b) 7→ a+ b

is continuous at (x, y). This amounts to showing that for any open neighbourhood W of
x + y in R, there exists an open neighbourhood U × V of (x, y) such that f(U × V ) ⊆ W .
By the definition of the I-adic topology, it suffices to prove this when W is of the form
x + y + Im for some m ≥ 1. We claim that U = x + Im and y + Im define the required
neighbourhood (U, V ) of (x, y). Given any (a, b) ∈ U × V , we have that a + b is a sum of
x, y and some multiples of elements in Im which is exactly what it means to be an element
of x+ y+ Im. Hence + is continuous. A similar argument applies to multiplication whence
the I-adic topology is a ring topology.

Definition 1.3.6. Let R1, R2, . . . be a sequence of topological rings equipped with contin-
uous homomorphisms fn : Rn+1 → Rn for all n ≥ 1. We define the inverse limit of the Ri

to be the ring

lim←−
n

Rn =

{
(xn) ∈

∏
n

Rn

∣∣∣∣∣ fn(xn+1) = xn∀n ≥ 1

}
together with coordinate-wise operations. The inverse limit ring has the subspace topology
induced from the product topology on

∏
nRn.

Proposition 1.3.7. Let R1, R2, . . . be a sequence of topological rings equipped with contin-
uous homomorphisms fn : Rn+1 → Rn for all n ≥ 1. Then the inverse limit topology on
lim←−nRn is a ring topology.

Proof. We want to show that the mapping

+ : (lim←−
n

Rn)× (lim←−
n

Rn)→ lim←−
n

Rn

is continuous in the inverse limit topology. Since the inverse limit topology is just the
subspace topology induced by the product topology, it suffices to show that

+ :

(∏
n

Rn

)
×

(∏
n

Rn

)
→
∏
n

Rn

is continuous in the product topology. Observe that + is continuous if and only if +m :∏
nRn×

∏
nRn → Rm is continuous for all m. We note that

∏
nRn×

∏
nRn =

∏
n(Rn×Rn)

and that we have a continuous projection mapping πm :
∏

n(Rn × Rn) → Rm for each m.
Since Rm is a topological ring, the addition mapping ϕm : Rm × Rm → Rm is continuous
whence +m = πm ◦ ϕm is continuous.

Definition 1.3.8. Let R be a ring and I / R an ideal. We define the I-adic completion
of R to be the ring

R̂I = lim←−
n

R/In

Define the continuous ring homomorphism

ν : R→ lim←−
n

R/In

r 7→ (r (mod In))n

We say that R is I-adically complete if ν is a bijection. Furthermore, if I = xR for some
x ∈ R, we shall often refer to the I-adic topology as the x-adic topology.
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1.4 The p-adic numbers

Let p denote any prime number for the rest of this course.

Definition 1.4.1. Let x ∈ Q\ { 0 } and write it in the form x = pna/b where n, a ∈ Z, b ∈
Z\>0 and (a, p) = (b, p) = 1. We define the p-adic absolute value on Q to be the function

| · |p : Q→ R≥0

given by

|x|p =

{
0 if x = 0
p−n if x = pn a

b

Proposition 1.4.2. The p-adic absolute value is a non-archimedean absolute value on Q.

Proof. By construction, |x|p = 0 if and only if x = 0. Now let x = pna/b, y = pmc/d ∈ Q be
non-zero with m ≥ n. Then

|xy|p =
∣∣∣pm+nac

bd

∣∣∣
p

= p−m−n = p−mp−n = |x|p|y|p

and

|x+ y|p =

∣∣∣∣pnad+ pm−ncb

bd

∣∣∣∣ ≤ p−n = max{|x|p, |y|p}

Definition 1.4.3. We define the p-adic numbers, denoted Qp, to be the completion of Q
with respect to | · |p. The valuation ring

Zp = {x ∈ Qp | |x|p ≤ 1 }

is called the p-adic integers.

Proposition 1.4.4. Zp is the closure of Z in Qp.

Proof. Fix a non-zero x ∈ Z such that x = pna with n ≥ 0 and (a, p) = 1. Then |x|p ≤ 1 so
Z ⊆ Zp. Now, by definition, the set

Z(p) = {x ∈ Q | |x|p ≤ 1 }

is dense in Zp. Hence, it suffices to show that Z is dense in Z(p). Fix some non-zero
x ∈ Q\ { 0 } with x = pna/b. It suffices to find a sequence (xi) ∈ Z such that xi → 1/b as
i → ∞. We can then multiply through by apn to achieve a sequence that converges to x.
Now, (b, p) = 1 implies that there exists xi, yi ∈ Z such that

bxi + piyi = 1

for all i ≥ 1. We claim that xi is the desired sequence. We have that∣∣∣∣xi − 1

b

∣∣∣∣
p

=

∣∣∣∣1b
∣∣∣∣
p

|bxi − 1|p = |piyi|p ≤ p−i → 0

as desired.
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Proposition 1.4.5. The non-zero ideals of Zp are pnZp for n ≥ 0. Furthermore, Z/pnZ ∼=
Zp/pnZp,

Proof. Fix a non-zero ideal I /Zp and choose x ∈ I such that |x|p is maximal (we can always
do this since the absolute value is discrete on Zp). Let y ∈ I. By construction, |y|p ≤ |x|p
so |yx−1|p ≤ 1 and so yx−1 ∈ Zp. Then y = (yx−1)x ∈ xZp whence I = xZp. It follows
immediately that if |x|p = p−n then I = (pn).

Now consider the mapping

fn : Z→ Zp/pnZp

Observe that pnZp = {x | |x|p ≤ p−n } and so

ker fn = {x ∈ Z | |x|p ≤ p−n } = pnZ

Furthermore, Z is dense in Zp and so every equivalence class in Zp/pnZp will contain the
image of an integer whence fn is surjective. fn thus induces an isomorphism

Z/pnZ ∼= Zp/pnZp

Corollary 1.4.6. Zp is a PID with a unique prime element p (up to units).

Proposition 1.4.7. The topology on Z induced by | · |p is the p-adic topology.

Proof. Fix a set U ⊆ Z. By definition, U is open with respect to | · |p if and only if for all
x ∈ U , there exists n ∈ N such that { y ∈ Z | |y − x|p ≤ p−n } ⊆ U . On the other hand,
U is open in the p-adic topology if and only if for all x ∈ U , there exists n ∈ N such that
x + pNZ ⊆ U . But { y ∈ Z | |y − x|p ≤ p−n } = x + pnZ so these topologies are equivalent
(in fact, they are equal).

Proposition 1.4.8. Zp is p-adically complete and is isomorphic to the p-adic completion
of Z.

Proof. The second assertion follows directly from the first via the proof of Proposition 1.4.5.
We thus need to show that the ring homomorphism

ν : Zp → lim←−
n

Zp/pnZp

is bijective. We have that

x ∈ ker ν ⇐⇒ x ∈ pnZp∀n ⇐⇒ |x|p ≤ p−n∀n ⇐⇒ |x|p = 0 ⇐⇒ x = 0

and so ν is injective. Now let (zn) ∈ lim←−n Zp/p
nZp. Define ai ∈ { 0, 1, . . . , p− 1 } recursively

such that xn =
∑n−1

i=0 aip
i is the unique representation of zn in the set 0, 1, . . . , pn−1. Then

x =
∑∞

i=0 aip
i exists in Zp and x ≡ xn ≡ zn (mod pn) for all n ≥ 0 and so v(x) = zn whence

ν is surjective.

Corollary 1.4.9. Every a ∈ Zp has a unique expansion a =
∑∞

i=0 aip
i with a ∈ { 0, . . . , p− 1 }.

8



2 Valued fields

2.1 Hensel’s Lemma

Definition 2.1.1. Let K be a field. We define a valuation on K to be a function v : K →
R ∪ {∞} such that

1. v(x) =∞ ⇐⇒ x = 0

2. v(xy) = v(x) + v(y)

3. v(x+ y) ≥ min{v(x), v(y)}

for all x, y ∈ K. Here we are using the conventions that r +∞ = ∞ and r ≤ ∞ for all
r ∈ R ∪ {∞}.

Remark. Let K be a valued field with valuation v. Then |x| = c−v(x) defines an absolute
value for any c ∈ R≥1. Conversely, if | · | is an absolute value on K then v(x) = − log |x| is
a valuation on K.

Example 2.1.2. Let x ∈ Qp and define vp(x) = − logp |x|p. Then vp is a valuation on Q
and if x ∈ Zp\0 then vp(x) = n if and only if pn || x.

Example 2.1.3. Let K be a field and consider the field of formal Laurent series over K

K((T )) =

{
∞∑

i>>−∞

aiT
i

∣∣∣∣∣ ai ∈ K
}

Then v (
∑
aiT

i) = min { i ∈ N | ai 6= 0 } is a valuation of K((T )).

Definition 2.1.4. Let K be a valued field with absolute value |v|. We write OK =
{x ∈ K | |x| ≤ 1 } for the valuation ring of K, mK = {x ∈ K | |x| = 1 } for its unique
maximal ideal and FK = OK/mk for its residue field. We say that K is a complete valued
field if it is complete with respect to the mK-adic topology. Moreover, if f(X) ∈ K[X] is a
polynomial then we say F is primitive if maxi |ai| = 1.

Theorem 2.1.5 (Hensel’s Lemma). Let K be a complete valued field . Suppose that
F (X) ∈ K[X] is a primitive polynomial with reduction f(X) ≡ F (X) (mod mK) ∈ K[X].
If f(X) admits a factorisation f(X) = g(X)h(X) with g and h coprime then F (X) ad-
mits a factorisation F (X) = G(X)H(X) satisfying G(X), H(X) ∈ OK [X], G(X) ≡ g(x)
(mod mK), H(X) ≡ h(x) (mod mK) and deg g = degG

Proof. Let d = degF and m = deg g so that deg h ≤ d−m. Let G0, H0 ∈ OK [X] be lifts of
g, h such that degG0 = deg g and degH0 ≤ d−m. Since g and h are coprime, the division
algorithm for polynomials implies that there exists A,B ∈ OK [X] such that

AG0 +BH0 ≡ 1 (mod mK)

Fix π ∈ mK such that

F −G0H0 ≡ AG0 +BH0 − 1 (mod π)

We claim that, by induction, we can construct sequences of polynomials Gn = G0+
∑n

i=1 π
iPi

and Hn = H0 +
∑n

i=1 πQi such that for all n ≥ 1 we have F ≡ Gn−1Hn−1 (mod πn) with
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each Pi, Qi ∈ OK [X] satisfying degPi < m and degQi ≤ d −m. We will then be able to
pass to the limit n→∞ to obtain the desired G and H.

We now proceed by induction. First assume n = 1. Then it is clear that the G0 and
H0 we have constructed satisfy the hypotheses. Now assume that we have constructed
Gn−1 and Hn−1. We will construct polynomials Pn, Qn ∈ OK [X] such that degPi < m and
degQi ≤ d−m so that if we set Gn = Gn−1 + πnPn and Hn = Hn−1 + πnQn then we have
F ≡ GnHn (mod πn+1). The latter requirement is equivalent to

F −Gn−1Hn−1 ≡ πn(Gn−1Qn +Hn−1Pn) (mod πn+1)

Rearranging and dividing by πn yields

G0Qn +H0Pn ≡ Gn−1Qn +Hn−1Pn ≡
1

πn
(F −Gn−1Hn−1) (mod π)

Now, AG0 + BH0 ≡ 1 (mod π) implies that Fn ≡ AG0Fn + BH0Fn (mod π) where Fn =
π−n(F − Gn−1Hn−1). Since the leading coefficient of G0 is a unit, we can use the division
algorithm to write BFn = QG0 + Pn with degPn < degG0, Pn ∈ OK [X]. Then

Fn ≡ AG0Fn +H0(Pn +QnQ0) ≡ G0(AFn +H0Q) +H0Pn ≡ Fn (mod π)

We can then define Qn to be the polynomial given by ignoring all the coefficients of AFn +
H0Q that are divisible by π and we are done.

Corollary 2.1.6. Let K be a complete valued field and F (X) =
∑n

i=0 aiX
i ∈ K[X] a

polynomial. If a0an 6= 0 and F is irreducible then for all 1 ≤ i ≤ n we have |ai| ≤
max{|a0|, |an|}.

Proof. After scaling the coefficients of F we may assume, without loss of generality, that F
is primitive. Let r ∈ K be minimal such that |ar| = 1. Then

F (X) = Xr(ar + ar+1X + · · ·+ anX
n−r) (mod m)

Suppose that max{|a0|, |an|} 6= 1. Then 0 < r < n and the above congruence lifts to a
non-trivial factorisation of G by Hensel’s Lemma. But F is irreducible and so we must have
that max{|a0|, |an|} = 1.

Corollary 2.1.7. Let K be a complete valued field and F ∈ OK [X] monic. If F (mod mK)
has a simple root α ∈ FK then F has a unique simple root α ∈ OK lifting α.

Corollary 2.1.8. Zp contains all (p− 1)th roots of unity.

Proof. First observe that Qp is complete with respect to the p-adic topology. Now consider
the polynomial Xp−1−1 ∈ Zp[X]. Then this polynomial is primitive and its reduction splits
into distinct linear factors over Fp[X]. We may lift these simple roots to simple roots in Zp
via Hensel’s Lemma.

Remark. Let K be a non-archimedean valued field. Observe that if |x| > |y| then |x+y| =
|x|. Indeed, |xy| ≤ max{|x|, |y|} = |x| and |x| ≤ max{|x+ y|, |y|} = |x+ y|. More generally,
if x =

∑∞
i=0 xi and the |xi| are distinct then |x| = maxi |xi|.
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2.2 Extension of Absolute Values

Definition 2.2.1. Let K be a non-archimedean valued field and V a K-vector space. A
norm on V is a function || · || : V → R≥0 such that

1. ||x|| = 0 ⇐⇒ x = 0

2. ||λx|| = |λ| ||x|| for all λ ∈ K and x ∈ V

3. ||x+ y|| ≤ max{||x||, ||y||} for all x, y ∈ V

Moreover, we say that two norms || · ||1 and || · ||2 are equivalent if they induce the same
topology on V . In other words, there exists C,D > 0 such that C||x||1 ≤ ||x||2 ≤ D||x||1
for all x ∈ V .

Proposition 2.2.2. Let K be a complete valued field and V a finite dimensional K-vector
space. Given a K-basis x1, . . . , xn of V let any element x ∈ V be written as x =

∑n
i=1 aixi.

Then ||x||max = maxi |ai| defines a norm on V and V is complete with respect to this norm.
Moreover, if || · || is any other norm on V then || · || is equivalent to || · ||max and hence V is
complete with respect to || · ||.

Proof. We first check that x is a norm. Indeed, we have

||x||max = 0 ⇐⇒ max
i
|ai| = 0 ⇐⇒ ai = 0 for all i ⇐⇒ x = 0

Furthermore

||λx||max = max
i
|λai| = |λ|max

i
|ai| = |λ| ||x||max

Finally,

||x+ y||max = max
i
|ai + bi| ≤ max

i
(max{|ai|, |bi|}) ≤ max{max

i
|ai|,max

i
|bi|}

= max{||x||max, ||y||max}

It is readily verified that V is complete with respect to K. Indeed, given a Cauchy sequence
of vectors in V , we may take the limit of the coordinate-wise sequences which exist since K
is complete. The vector whose coordinates are such limits is exactly the limit of the original
Cauchy sequence.

Now let || · || be any other norm on V . We need to exhibit C,D > 0 such that C||x||max ≤
||x|| ≤ D||x||max for all x ∈ V . Let D = maxi(||xi||). Then

||x|| =

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

xiai

∣∣∣∣∣
∣∣∣∣∣ ≤ max

i
(|ai, ||xi||) ≤ (max

i
|ai|)(max

i
||xi||) = D||x||max

We find C by induction on n = dimV . Suppose n = 1. Then

||x|| = ||a1x1|| = |a1| ||x1|| = ||x||max||x1||

so in this case we have C = ||x1||. Now suppose that n ≥ 2. Let

Vi = Kx1 ⊕ . . . Kxi−1 ⊕Kxi+1 ⊕ · · · ⊕ kxn

By the induction hypothesis, each Vi is complete with respect to the restriction of || · || to
Vi. Hence Vi is closed in V and so, in particular, W = ∪ni=1(xi + Vi) is closed in V . By the

11



definition of Vi, W does not contain 0. It then follows that there exists C > 0 such that if
x ∈ W then ||x|| ≥ C. We claim that this C satisfies the claim.

Fix 0 6= x =
∑n

i=1 aixi ∈ V and choose an index r such that |ar| = ||x||max. Then

||x||−1max||x|| = ||a−1r x|| =
∣∣∣∣∣∣∣∣a1ar x1 + · · ·+ ar−1

ar
xr−1 + xr +

ar+1

ar
xr+1 + · · ·+ an

ar
xn

∣∣∣∣∣∣∣∣
≥ C

since this last vector is an element of xr + Vr.

Lemma 2.2.3. Let K be a valued field. Then OK is integrally closed in K.

Proof. Let x ∈ K be such that |x| > 1. Now let a0, . . . , an−1∈OK . Then

|a0 + a1x+ · · ·+ an−1x
n−1| ≤ max

i
|aixi| ≤ max

i
|xi| = |xn−1 ≤ |xn|

Now suppose that x is integral over OK so that we have

xn + an−1x
n−1 + · · ·+ a0 = 0

Then we would have that

xn = −(an−1x
n−1 + · · ·+ a0)

so that |xn| = |an−1xn−1 + · · · + a0| which is a contradiction. Hence x cannot be integral
over OK .

Lemma 2.2.4. Let K be a field and | · | : K → R≥0 a function satisfying the first two
axioms of an absolute value. Then | · | is a non-archimedean absolute value on K if and only
if |x| < 1 implies that |x+ 1| < 1 for all x ∈ K.

Proof. First suppose that | · | is a non-archimedean absolute value on K. Suppose that
|x| < 1. Then |x + 1| ≤ max{|x|, 1} < 1. Conversely, suppose that |x + 1| < 1. Then
|x| = |x+ 1− 1| ≤ max{|x+ 1|, 1} < 1 as desired.

Now suppose that |x| < 1 implies that |x + 1| < 1 for all x ∈ K. We need to show
that for all x, y ∈ K we have |x + y| ≤ max{|x|, |y|}. Suppose, without loss of generality,
that |x| ≤ |y|. Then |x/y| < 1 so that |x/y + 1| < 1 whence |x + y| ≤ |y|. Hence, clearly,
|x+ y| ≤ max{|x|, |y|}.

Theorem 2.2.5. Let K be a complete valued field and L/K a finite extension. Then | · |
extends uniquely to an absolute value on L given by

|α|L = |NL/K(α)|1/[L:K]

Moreover, L is complete with respect to |α|L.

Proof. We first show that if such an absolute value | · |L on L were to exist then it is unique
and L is complete with respect to | · |L. Indeed, suppose that | · |′L is another absolute value
on L extending L. Then we can view | · |L and | · |′L as norms on the finite dimensional
K-vector space L. By Proposition 2.2.2, these norms are equivalent and so generate the
same topology on L with respect to which L is complete. Going back to the viewpoint of
absolute values, Proposition 1.1.4 then implies that there exists s > 0 such that | ·|L = | · |′L

s.
But | · |L|K = | · |′L|K so we must have that s = 1.

12



We now show that the given formula indeed defines an absolute value on L. First note
that, given α ∈ K, we have

|α|L = 0 ⇐⇒ NL/K(α) = 0 ⇐⇒ α = 0

Moreover, given α, β ∈ K we have

|αβ|L = |NL/K(αβ)|1/[L:K] = |NL/K(α) NL/K(β)|1/[L:K] = |NL/K(α)|1/[L:K]|NL/K(β)|[L:K]

= |α|L|β|L

It remains to show that | · |L satisfies the ultrametric inequality. Note that by Lemma 2.2.4,
it suffices to show that for all α ∈ L we have |α|L < 1 if and ony if |α + 1|L < 1.

To this end, we first observe that

{α ∈ L | |α|L ≤ 1 } = {α ∈ L | NL/K(α) ∈ OK }

We claim that this set is the integral closure of OK in L. If this were indeed the case then
we would have that |α + 1|L ≤ 1 since the integral closure is a ring.

Hence fix 0 6= α ∈ L such that NL/K(α) ∈ OK and let f(X) = a0+· · ·+an−1Xn−1+Xn ∈
K[X] be the minimal polynomial of α over K. By Corollary 2.1.6, we know that for all i
we have |ai| ≤ max{|a0|, 1}. By the properties of the field norm, there exists an m ≥ 1 such
that NL/K(α) = ±am0 . Then

|ai| ≤ max{|a0|, 1} = max{|NL/K(α)|1/m, 1} = 1

and so f(X) ∈ OK [X] and so α is integral over OK .
Conversely, suppose that α ∈ L is integral over OK . We need to show that NL/K(α) ∈

OK . Indeed, fix an algebraic closure K̄ of K and let σ1, . . . , σn be the n distinct embeddings
of L into K̄ where n = [L : K]. Then

NL/K(α) =

(
n∏
i=1

σi(α)

)d

for some d ∈ N≥1. But each σi(α) is integral over OK since α is and so NL/K(α) is integral
over OK as claimed.

Corollary 2.2.6. Let K be a complete valued field and L/K a finite extension of K ad-
mitting a unique extension | · |L extending | · |. Then OL is the integral closure of OK in
L.

Corollary 2.2.7. Let K be a complete valued field and L/K an algebraic extension of K.
Then | · | extends uniquely to an absolute value on L.

Corollary 2.2.8. Let K be a complete valued field and L/K a finite extension of K. Then
any σ ∈ Aut(L/K) acts as an isometry of the unique extension of | · | to L.

Proof. Let | · |L be the unique extension of | · | to L. Then it is easy to see that α 7→ |σ(α)|L
is also an absolute value on L which extends | · | to L. Hence |σ(α)|L = |α|L for all α ∈ L
whence σ is an isometry of | · |L.
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2.3 Newton Polygons

Definition 2.3.1. Let S ⊆ R2 be a subset. We say that S is lower convex if S is convex
and (x, y) ∈ S implies that (x, z) ∈ S for all z ≥ y. Moreover, given any subset T ⊆ R2,
we define the lower convex hull of T to be the minimal lower convex superset S ⊇ T of
T . Explicitly, the lower convex hull of T is given by the intersection of all lower convex sets
containing T .

Definition 2.3.2. Let K be a non-archimidean valued field with valuation v and f(X) =
a0 + a1X + · · ·+ anX

n ∈ K[X] a polynomial. We define the Newton polygon of f to be
the lower convex hull of the set

{ (i, v(ai)) | 0 ≤ i ≤ n where ai 6= 0 }

We will usually identify the Newton polygon of f with the line in R2 that bounds the lower
convex hull from below as in the following example.

Example 2.3.3. Consider Qp with the p-adic valuation vp. Let f(X) = X4+p2X3−p3X2+
pX + p3. Then the Newton polygon of f(X) is

i

vp(ai)

1 2 3 40

1

2

3

Definition 2.3.4. Let K be a non-archimidean valued field with valuation v and f(X) ∈
K[X]. Let N be the Newton polygon of f . We make the following definitions:

1. We call the vertices of N the break points.

2. We call the edges of N the line segments.

3. We call the horizontal length of a line segment its multiplicity.

Theorem 2.3.5. Let K be a complete non-archimidean valued field with valuation v and
f(X) = a0 + a1X + · · ·+ anX

n ∈ K[X] a polynomial. Let L be a splitting field of f over K
and let w be the unique extension of v to L. If (r, v(ar)) → (s, v(as)) is a line segment of
the Newton polygon of f with slope −m then f has s− r roots in L with valuation m.

Proof. Without loss of generality, we may assume that an = 1. Indeed, dividing f(X)
through by an only shifts the Newton polygon of f(X) vertically and so does not change
any of its structure. Let α1, . . . , αn be the roots of f(X) in L and label them so that

w(α1) = · · · = w(αs1) = m1

w(αs1+1) = · · · = w(αs2) = m2

...

w(αst+1) = · · · = w(αn) = mt+1
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with m1 < · · · < mt+1. Now, each coefficient of f can be expressed in terms of symmetric
polynomials of the roots of f , we have

v(an) = v(1) = 0

v(an−1) = w

(
n∑
i=1

αi

)
≥ min

1≤i≤n
w(αi) = m1

v(an−2) = w

( ∑
1≤i 6=j≤n

αiαj

)
≥ min

1≤i 6=j≤n
w(αiαj) = 2m1

...

v(an−s1) = w

 ∑
1≤i1 6=···6=is1≤n

αi1 . . . αis1

 = min
1≤i1 6=···6=is1≤n

w(αi1 . . . αis1 ) = s1m1

where in the last line we have equality as one of the terms in the summation attains a
minimal valuation. Continuing in this fashion, we have

v(an−(s1+1)) = w

 ∑
1≤i1 6=···6=is1+1≤n

αi1 . . . αis1+1

 ≥ min
1≤i1 6=···6=is1+1≤n

w(αi1 . . . αis1+1) = s1m1 +m2

...

v(an−s2) = w

 ∑
1≤i1 6=···6=is2≤n

αi1 . . . αis2

 ≥ min
1≤i1 6=···6=is2≤n

w(αi1 . . . αis2 ) = s1m1 + s2m2

and so on. Plotting the points (n− si,
∑n

i=1 simi) (where s0 = 0) and drawing a line through
them gives us the Newton polygon of f . Indeed, the inequalities we have just demonstrated
show that all the points (i, v(ai)) lie either above or on this line. We thus have the following
picture

(n, 0)

(n− s1, s1m1)

(n− s1 − s2, s1m1 + (s2 − s1)m1)
· · ·

Now, the first line segment (counting from the right), has length n− (n− s1) = s1 and slope
0−s1m1

n−(n−s1) = −m1 as claimed. In general, the length of the kth segment is (n−sk−1)−(n−sk) =
sk − sk−1 and slope

(s1m1 +
∑k−2

i=1 (si+1 − si)mi+1 − (s1m1 +
∑k−1

i=1 (si+1 − si)mi+1

(n− sk)− (n− sk−1)
=
−(sk − sk−1)mk
sk − sk−1

= −mk

as claimed.
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Corollary 2.3.6. Let K be a complete non-archimedean valued field with valuation v and
f(X) ∈ K[X] an irreducible polynomial. Then the Newton polygon of f has a single line
segment.

Proof. It suffices to show that all roots of f have the same valuation. Let α and β be roots
in the splitting field L of f . Then there exists σ ∈ Aut(L/K) such that σ(α) = β. But then
v(α) = v(β) by Corollary 2.2.8.

3 Discretely Valued Fields

3.1 Basic Facts

Definition 3.1.1. Let K be a nonarchimidean valued field with valuation v. We say that K
is a discretely valued field (and v is a discrete valuation) if v(K×) is a discrete subgroup
of R. This is equivalent to v(K×) being an infinite cyclic group.

Definition 3.1.2. Let K be a complete discrete valuation field. We say that K is a local
field if it has finite residue field.

Definition 3.1.3. Let K be a discrete valuation field. We define a uniformiser of K to
be any element π ∈ K such that v(π) > 0 and v(π) generates v(K×). This is equivalent to
v(π) having minimal positive valuation.

Example 3.1.4. Q,Qp with valuation vp are discrete valuation fields. Qp is a local field
with uniformiser p. Moreover, K((T )) with valuation v

(∑∞
n>>−∞ anT

n
)

= inf n|an 6= 0 is a
discrete valuation field with uniformiser T and OK((T )) = K[[T ]].

Proposition 3.1.5. Let K be a discrete valuation field with uniformiser π. Let S ⊆ OK be
a complete set of coset representatives of OK/mK = FK containing 0. Then

1. The non-zero ideals of OK are πnOK.

2. OK is a principal ideal domain with unique prime π (up to multiplication by units)
and mK = πOK.

3. The topology on OK induced by the absolute value is the π-adic topology.

4. If K is complete then OK is π-adically complete.

5. If K is complete then any x ∈ K admits a unique expansion

x =
∞∑

n>>−∞

anπ
n

for some an ∈ S.

6. The completion K̂ is also a discrete valuation field with π a uniformiser and

OK�πnOK
∼= OK̂�πnOK̂

via the natural map.

Proof. The proof of this Proposition is exactly the same as that for Qp with K replacing Qp

and π replacing p.
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Proposition 3.1.6. Let K be a discretely valued field. Then K is a local field if and only
if OK is compact.

Proof. Fix a uniformiser π of K and suppose that K is a local field. We claim that OK
is sequentially compact. This is indeed sufficient since the topology on K is the metric
topology induced by the absolute value. By induction, it is easy to see that for all n ≥ 1,
OK/πnOK is finite. Indeed, the base case is clear since K is a local field. Now,

OK�πn+1OK
∼=
(
OK�πnOK

)(
πnOK�πn+1OK

)
The first term is finite by the induction hypothesis and the second term is isomorphic to FK
via the isomorphism x 7→ π1−nx.

Now let (xi) ⊆ OK be a sequence. Then we can always find a subsequence (x1,i) of (xi)
which is constant modulo π since FK is finite. Similarly, we can find a subsequence (x2,i)
of (x1,i) which is constant modulo π2. Continuing in this way, we construct a sequence (xii)
of OK such that (xn,i) is constant modulo πn. Then the sequence (xi,i)

∞
i=1 is Cauchy since

|xi,i − xj,j| ≤ |π|j for all j ≤ i. Since OK is π-adically complete, this sequence converges
to an element of OK so that (xi) has a convergent subsequence. Hence OK is sequentially
compact as claimed.

Now suppose that OK is compact. We need to show that K is complete and FK is finite.
Observe that OK and π−nOK are isomorphic as topological rings for any n ≥ 0 and so the
latter is also compact and thus complete1. Since any element of K takes the form πnu for
some n ∈ Z and unit u ∈ O×K , it follows that

K =
⋃
n≥0

π−nOK

is complete. Moreover, the canonical projection map OK → FK is continuous when FK is
equipped with the discrete topology and so FK is compact. But a discrete space is compact
if and only if it is finite so we must have that FK is finite as desired.

Definition 3.1.7. Let R be a ring. We say that R is a discrete valuation ring if it is a
principal ideal domain with a unique prime element up to multiplication by units.

Proposition 3.1.8. Let R be a ring. Then R is a discrete valuation ring if and only if R
is the valuation ring of some discrete valuation field.

Proof. First suppose that R is a discrete valuation ring with π its unique prime. Then by
uniqueness of prime factorisation we have that every 0 6= x ∈ R admits a unique factorisation
x = πnu for some n ∈ N and u ∈ R×. Define a discrete valuation on R by

v(x) =

{
n if x 6= 0
∞ if x = 0

which extends uniquely to K = Frac(R) so that K is a discrete valuation field. We claim
that R = OK . We first observe that K = R[ 1

π
] since any non-zero element of K is of the

form πnu for some n ∈ Z and u ∈ R×. Then v(πnu) = n ∈ N ⇐⇒ πnu ∈ R and so R = OK
as claimed.

Conversely, suppose that R is the valuation ring of some discrete valuation field. Then
it is immediate by Proposition 3.1.5 that R is a principal ideal domain with a unique prime
element up to units.

1Recall that any compact metric space is complete.
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Definition 3.1.9. ] Let K be a valued field with residue field FK . We say that K is of
equal characteristic if charK = charFK . On the other hand, we say that K has mixed
characteristic otherwise.

Remark. We remark that the only possible examples of mixed characteristic valued fields
are the ones where charK = 0 and charFK > 0.

3.2 Teichmüller Lifts

Definition 3.2.1. Let R be a ring. We say that R is perfect if either charR = 0 or if when
charR = p then the Frobenius endomorphism x 7→ xp is an automorphism. The latter case
is equivalent to every element of R having a unique pth root.

Remark. We remark that a field K is perfect if and only if every extension of K is separable.

Definition 3.2.2. Let K be a discrete valuation field and π ∈ K a uniformiser. We define
the normalised valuation of K to be the unique valuation vK in the equivalence class of
v such that vK(π) = 1.

Example 3.2.3. vQp = vp

Lemma 3.2.4. Let R be a ring and x ∈ R an element. Assume that R is x-adically complete
and that R/xR is perfect of characteristic p. Then there exists a unique map

[·] : R/xR→ R

called the Teichmüller lift such that [a] ≡ a (mod x) and [ab] = [a][b] for all a, b ∈ R/xR.
Furthermore, if R itself has characteristic p then [·] is a ring homomorphism.

Proof. Fix a ∈ R/xR. Since R is perfect, for each n ≥ 0 there exists a unique (p−n)th root
of a, label it ap

−n
. Now let αn ∈ R be an arbitrary lift of ap

−n
. Write βn = αp

n

n . We first
claim that [a] = limn→∞ βn exists and is independent of the choice of lifts. To ease notation,
write [a] = limn→∞ βn.

First observe that if the limit exists then [a] is independent of the choice of lifts. Indeed,
suppose that βn and β′n are a choice of lifts. Then β1, β

′
2, β3, β

′
4, . . . is also a choice of lifts

and converges and so we must have that limn→∞ βn = limn→∞ β
′
n. We must hence show that

βn+1 − βn → 0 x-adically. We have that

βn+1 − βn = αp
n+1

n+1 − αp
n

n = (αpn+1)
pn − αpnn

Now,

αpn+1 ≡ (ap
−(n+1)

)p ≡ αn (mod x)

so that αpn+1 − αn ≡ 0 (mod x). Raising this to the (pn)th power and using the Binomial
Theorem and the fact that R/xR has characteristic p shows that, in fact,

(αpn+1)
pn − αpnn ≡ 0 (mod xp

n

)

and so (βn) is Cauchy. Since R is complete, it then follows that limn→∞ βn exists. To see that
a ≡ [a] (mod x), we first note that the natural projection map R→ R/xR is continuous if
we equip R/xR with the discrete topology so that

lim
n→∞

(αp
n

) ≡ lim
n→∞

(ap
−n

)p
n

= lim
n→∞

a = a (mod x)
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We next show that [·] is multiplicative. Fix b ∈ R/xR with γn ∈ R lifting bp
−n

for all n ≥ 0.
Then αnγn lifts (ab)p

−n
= ap

−n
bp
−n

. Then

[ab] = lim
n→∞

αp
n

n γ
pn

n =
(

lim
n→∞

αp
n

n

)(
lim
n→∞

γp
n

n

)
= [a][b]

We next show uniqueness of [·]. Suppose that φ : R/xR → R another map satisfying the
above properties. Then φ(ap

−n
) ≡ ap

−n
mod x and so

[a] = lim
n→∞

φ(ap
−n

)p
n

= lim
n→∞

φ(a) = φ(a)

Finally, suppose that R has characteristic p. Then αn + γn lifts ap−1 + bp−1 = (a+ b)p
−n

by
Freshman’s Dream so that

[a+ b] = lim
n→∞

(αn + βn)p
n

= lim
n→∞

ap
n

n + γp
n

n = [a] + [b]

So [·] is additive and multiplicative and [1] = 1 so that [·] is a ring homomorphism.

Example 3.2.5. [0] = 0 and [1] = 1. If R = Zp then [·] : Fp → Zp satisfies [x]p−1 = [xp−1] =
[1] = 1 for all non-zero x so that [x] is the unique (p − 1)th root of unity lifiting x ∈ Fp.
Recall that by Hensel’s Lemma, we proved the existence of these roots and the Teichmüller
Lift then gives us an explicit description of them.

Theorem 3.2.6. Let K be a complete discretely valued field of equal characteristic p such
that FK is perfect. Then K ∼= FK((T )).

Proof. Since every discrete valuation field is the field of fractions of its valuation ring, it
suffices to show that OK ∼= FK [[T ]]. Since K has characteristic p, so does FK so that
[·] : FK → OK is an injective ring homomorphism. Fix a uniformiser π ∈ OK and define a
ring homomorphism

FK → OK
∞∑
n=0

anT
n 7→

∞∑
n=0

[an]πn

By Part 5 of Proposition 3.1.5, this mapping is surjective. The injectivity is clear by injec-
tivity of [an].

Corollary 3.2.7. Let K be a local field of equal characteristic p. Then K ∼= Fq((T )) where
q = |FK |.

4 p-adic analysis

4.1 Mahler’s Theorem

Lemma 4.1.1. Let K be a complete valued field with absolute value | · | and assume that
Qp ⊆ K and | · ||Qp = | · |p. Let f(X) =

∑∞
i=0 aiX

i ∈ K[[X]] be a power series. If f(X)
converges on a (closed or open) disc D then f(X) is continuous on that disc.
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Proof. Let x, y ∈ D. We assume that x 6= 0. Suppose there exists a δ > 0 such that
|x − y| < δ and δ < |x|. It follows immediately from the ultrametric inequality that
|x| = |y|. Then

|f(x)− f(y)| =

∣∣∣∣∣
∞∑
i=0

(aix
i − aiyi)

∣∣∣∣∣
≤ max

i≥0
{|aixi − aiyi|}

= max
i≥0
{|ai|(x− y)(xi−1 + xi−2y + · · ·+ xyi−2 + yi−1)}

We now observe that

|xn−1 + xn−2y + · · ·+ xyn−2 + yn−1| ≤ max
1≤i≤n

{|xn−1yi−1|} = |x|n−1

Hence

|f(x)− f(y)| ≤ max
i≥0
{|ai||x− y||x|i−1} <

δ

|x|
max
i≥0

(|aixi|)

Now by hypothesis, f(X) converges on a disc which means the absolute values of its terms
converges to 0 on the same disc. Hence |anxn| is bounded above by some real constant. We
may therefore, given ε > 0, make |f(x)− f(y)| < ε by choosing a reasonable δ < |x|.

The case where x = 0 is an immediate consequence of the convergence of f(X) on D.

Definition 4.1.2. Let R be a ring. We define the formal exponential series over R to
be

exp(X) =
∞∑
n=0

xn

n!
∈ R[[X]]

and the formal logarithm series over R to be

log(1 +X) =
∞∑
n=0

(−1)n−1
xn

n

Proposition 4.1.3. Let K be a complete valued field with absolute value |·| and assume that
Qp ⊆ K and that | · ||Qp = | · |p. Then exp(x) converges when |x| < p−1/(p−1) and log(1 + x)
converges for |x| < 1. Moreover, they define continuous maps

exp : {x ∈ K | |x| < p−1/(p−1) } → OK
log : {x ∈ K | |x| < 1 } → K

Proof. Let v = − logp | · | be the valuation on K extending vp. Trivially, we have v(n) ≤
logp(n) and so

v

(
xn

n

)
≥ nv(x)− v(n) ≥ nv(x)− logp(n)

which tends to ∞ if v(x) > 0 and so log converges when |x| < 1.

To prove the assertion concerning exp, first observe2 that v(n!) = n−sp(n)
p−1 where sp(n) is

the sum of the p-adic digits of n. Then

v

(
xn

n!

)
≥ nv(x)− v(n!) = nv(x)− n− sp(n)

p− 1
≥ nv(x)− n

p− 1
= n

(
v(x)− 1

p− 1

)
≥ 0

which tends to ∞ as n→∞ if v(x) > 1
p−1 .

2This follows from Legendre’s Theorem
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Remark. Fix n ≥ 1. Recall that the binomial coefficient(
X

2

)
=
X(X − 1) . . . (X − n+ 1)

n!

is a polynomial in X and hence defines a continuous function Zp → Qp. If n = 0, set
(
x
n

)
= 1

for all x ∈ Zp.
Now if x ∈ Z≥0 then

(
x
n

)
∈ Z. But Z is dense in Zp so by continuity, we must have that(

x
n

)
∈ Zp for all x ∈ Zp.

Proposition 4.1.4. Let C(Zp,Qp) be the Qp-vector space of continuous functions Zp → Qp

equipped with the norm3

||f || = sup
x∈Zp
|f(x)|p

Then || · || is a non-archimidean norm on C(Zp,Qp) and fn → f with respect to || · || if and
only if fn → f uniformly. Moreover, C(Zp,Qp) is complete with respect to || · ||.

Proof. It is clear that ||f || = 0 if and only if f = 0 and that ||λf || = |λ|p||f ||. The ultrametric
inequality also immediately follows from that for | · |p and so || · || is a non-archimidean norm.

The fact that convergence with respect to || · || is equivalent to uniform convergence is
immediate from the definitions. Indeed, the following are equivalent

∀ε > 0 ∃N ∈ N such that ∀n ≥ N, |fn(x)− f(x)|p ≤ ε ∀x ∈ Zp
∀ε > 0 ∃N ∈ N such that ∀n ≥ N, sup

x∈Zp
|fn(x)− f(x)|p < ε

To show that C(Zp,Qp) is complete, it thus suffices to show that every Cauchy sequence
(fn) in C(Zp,Qp) converges uniformly to some limit in C(Zp,Qp). Given such a sequence
(fn) and x ∈ Zp, (fn(x)) is a Cauchy sequence in Qp. But Qp is complete so this sequence
converges, say to some f(x) ∈ Qp. We claim that this function f , defined pointwise, is the
desired limit of (fn) in C(Zp,Qp).

To this end, we must first show that f ∈ C(Zp,Qp). By definition, we need to show that
for all ε > 0, we can find a δ > 0 such that if |x− y|p < δ then |f(x)− f(y)|p < δ. Observe
that

|f(x)− f(y)|p = |f(x) + fn(x)− fn(x) + fn(y)− fn(y)− f(y)|p
≤ max{|f(x)− fn(x)|p, |fn(x)− fn(y)|p, |fn(y)− f(y)|p}

Since fn → f pointwise and fn is continuous, we can always find a δ that ensures that each
of these three terms is less than ε. Such a δ then ensures that |f(x)−f(y)|p < ε as required.

We must now show that fn → f uniformly. In other words, we need to show that for all
ε > 0, there exists N ∈ N such that |fn(x)− f(x)|p < ε ∀x ∈ Zp. Given m > n we have

|fn(x)− f(x)|p = |fn(x) + fm(x)− fm(x)− f(x)|p ≤ max{|fn(x)− fm(x)|p, |fm(x)− f(x)|p}

Now fn is Cauchy and fn converges to f pointwise so we can always find an N ∈ N that
makes each of these two terms less than ε. Such an N then ensures that |fn(x)− f(x)|p < ε
as required.

3This is well-defined since Zp is compact and so the supremum exists and is attained.
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Definition 4.1.5. Let c0 denote the Qp-vector space of sequences (an)n∈N in Qp such that
an → 0 equipped with the norm ||(an)n|| = maxn∈N |an|p.

Remark. It is clear that c0 is complete since Qp is itself complete.

Definition 4.1.6. Let ∆ : C(Zp,Qp) → C(Zp.Qp) be the forward difference operator
given by ∆f(x) = f(x+ 1)− f(x). Note that ∆ is clearly a linear operator

Proposition 4.1.7. The linear operator ∆ is norm-decreasing and satisfies

∆nf(x) =
n∑
i=0

(−1)i
(
n

i

)
f(x+ n− i)

Proof. We have that

|∆f(x)|p = |f(x+ 1)− f(x)|p ≤ ||f ||

and so ||∆f || ≤ ||f ||.
To prove the formula, introduce the forward shift operator Sf(x) = f(x + 1) so that

we can write ∆f(x) = (S − I)f(x) where I is the identity operator. Then

∆n = (S − I)n =
n∑
i=0

(
n

i

)
Sn−i =

n∑
i=0

(
n

i

)
f(x+ n− i)

as claimed.

Definition 4.1.8. Let f ∈ C(Zp,Qp) be a continuous function. We define the nth Mahler
coefficient of f , denoted an(f) ∈ Qp, to be

an(f) = ∆nf(0) =
n∑
i=0

(−1)i
(
n

i

)
f(n− i)

Lemma 4.1.9. Let f ∈ C(Zp,Qp) be a continuous function. Then there exists k ∈ N such

that ||∆pkf || ≤ 1
p
||f ||.

Proof. If f = 0 then there is nothing to prove so suppose f is not the 0 function. Moreover,
after scaling, we may assume that ||f || = 1. We thus need to exhibit a k ∈ N such that
∆pkf(x) ≡ 0 (mod p) for all x ∈ Zp. We have that

∆pkf(x) =

pk∑
i=0

(−1)i
(
pk

i

)
f(x+ pk − i) ≡ f(x+ pk)− f(x) (mod p)

since the binomial coefficients are all divisible by p except when i = 0 and i = pk. For this
to be 0 modulo p, we thus require that f(x+ pk)− f(x) ≡ 0 (mod p).

Now observe that since Zp is compact, f is uniformly continuous on Zp so we can always
find a k ∈ N such that

|x− y|p ≤ p−k =⇒ |f(x)− f(y)|p ≤ p−1

for all x, y ∈ Zp. In particular, this holds for y = x+ pk so we may just choose such a k.
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Proposition 4.1.10. Consider the mapping

φ : C(Zp,Qp)→ c0

f 7→ (an(f))n∈N

The φ is an injective norm-decreasing Qp-linear map.

Proof. Qp-linearity of φ is immediate from Qp-linearity of ∆. We now check that φ is
well-defined. In other words, we must show that an(f)→ 0 as n→∞. First observe that

|an|p = |∆nf(0)|p ≤ sup
x∈Zp
|∆nf(x)|p = ||∆nf ||

so that it suffices to show that ||∆nf || → 0 as n→∞. Recall that ||∆nf || is monotonically
decreasing so we only have to find a subsequence of ||∆nf || which converges to 0. But by
Lemma 4.1.9, we can always find a sequence k1, k2, . . . of natural numbers such that

||∆pk1+···+kn || ≤ 1

pn
||f ||

so the subsequence ||∆p
∑n
i=1 ki || converges to 0 as required. To see that φ is norm-decreasing,

observe that

||φ(f)|| = ||(an(f))|| = max
n∈N
|an(f)|p ≤ ||∆nf || ≤ ||f ||

We must finally show injectivity. Suppose that an(f) = 0 for all n ∈ N. By induction, we
have that

f(n) = ∆nf(0) = an(f) = 0

for all n ≥ 0. Hence f is identically zero on Z≥0. Now density and cotinuity imply that f
is identically zero on Zp itself so that φ is injective.

Lemma 4.1.11. Let x ∈ Zp and n ∈ N≥1. Then(
x

n

)
+

(
x

n− 1

)
=

(
x+ 1

n

)
Proof. This is true when x ∈ Z≥0 (this is just Pascal’s Identity) and so, by density and
continuity, it must hold for all x ∈ Zp.

Proposition 4.1.12. Conisder the mapping

ψ : c0 → C(Zp,Qp)

(an)n∈N 7→ fa(x) =
∞∑
n=0

an

(
x

n

)
Then ψ is a norm-decreasing Qp-linear map such that an(fa) = an for all n ≥ 0.

Proof. We first note that this definition is well-defined since the series is uniformly con-
vergent. Moreover, the Qp-linearity is immediate from the definition. To see that ψ is
norm-decreasing, note that

|ψ(a)|p =

∣∣∣∣∣
∞∑
n=0

an

(
x

n

)∣∣∣∣∣ ≤ sup
n∈N
|an|p

∣∣∣∣(xn
)∣∣∣∣

p

≤ sup
n∈N
|an|p = ||a||
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for all x ∈ Zp. In particular, we may pass to the supremum to yield ||ψ(a)|| ≤ ||a||.
To prove the assertion concerning coefficients let a(k) = (ak, ak+1, . . . ). Then

∆fa(x) = fa(x+ 1)− fa(x)

=
∞∑
n=1

an

((
x+ 1

n

)
−
(
x

n

))
=
∞∑
n=1

an

(
x

n− 1

)
=
∞∑
n=0

an+1

(
x

n

)
= fa(1)(x)

Iterating this process, we see that ∆kfa = fa(k) so that

an(fa) = ∆nfa(0) = fa(n)(0) = an

Lemma 4.1.13. Let V and W be normed spaces and φ : V → W,ψ : W → V linear maps
such that φ is injective and norm-decreasing, ψ is norm-decreasing and φψ = idW . Then
ψφ = idV and φ and ψ are isometries.

Proof. Fix v ∈ V .

φ(v − ψφv) = φ(v)− φψφ(v) = φ(v)− φ(v) = 0

But φ is injective so we must have that ψφ(v) = v so that ψφ = idV . Moreover

||v|| ≥ ||φ(v)|| ≥ ||ψφ(v)|| = ||v||

so we must have equality throughout. Similarly, ||v|| = ||ψ(v)|| thereby proving the Lemma.

Theorem 4.1.14 (Mahler’s Theorem). The Qp-vector spaces C(Zp,Qp) and c0 are iso-
metric. In particular, every function f ∈ C(Zp,Qp) admits a unique expansion f(x) =∑∞

n−0 an
(
x
n

)
.

Proof. By Propositions 4.1.12 and 4.1.10 we have a pair of maps

C(Zp,Qp) c0
φ

ψ

such that φ is injective and norm-decreasing, ψ is norm-decreasing and ψφ = id. Lemma
4.1.13 then implies that ψ and φ are mutually inverse isometries.

5 Ramification Theory of Local Fields

From now on, we shall assume that the characteristic of the residue of every local field
is p unless otherwise explicitly stated.
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5.1 Finite Extensions

Remark. Let R be a principal ideal domain and M a finitely generated R-module. Recall
that the Structure Theorem for Finitely Generated Modules over a Principal Ideal Domain
asserts that M ∼= Mtors ⊕ Rn where Mtors is the finite torsion part of M and n ∈ N is the
rank of M . Moreover, if N is an R-submodule of M then N is also finitely generated and
N ∼= Ntors ⊕Rm for some m ≤ n

Proposition 5.1.1. Let K be a local field and L/K a finite extension of degree n. Then
OL is a finitely generated free OK-module of rank n and FL/FK is an extension of degree at
most n. Furthermore, L is a local field.

Proof. Fix a K-basis α1, . . . , αn of L and let || · || denote the max-norm on L. If | · | is
the unique absolute value on L extending the absolute value on K then | · | and || · || are
equivalent as norms on L. We can always find constants r > s > 0 such that

M = {x ∈ L | ||x|| ≤ s } ⊆ OL ⊆ {x ∈ L | ||x|| ≤ r } = N

We may assume, without loss of generality, that r = |a| and s = |b| for some a, b ∈ K×.
Then

M =
n⊕
i=1

OKbαi ⊆ OL ⊆
n⊕
i=1

OKaαi = N

But both M and N are finitely generated free OK-modules of rank n so we must also have
that OL is a finitely generated free OK-module of rank n.

Now, mK = mL ∩OK since OL is the integral closure of OK in L so we obtain a natural
injection

FK = OK�mK
→ OL�mL

= FL

Since OL is generated over OK by n-elements, FL is generated by n elements over FK so
that [FL : FK ] ≤ n.

To see that L is a local field, we must show that it is a complete discrete valuation
field with finite residue field. The latter is immediate as FK is finite and FL/FK is a finite
extension so FL must be a local field. Moreover, L is complete by Theorem 2.2.5. Now let
vK be the normalised valuation on K and vL the unique valuation on L extending vK . Then

vL(α) =
1

n
vK(NL/K(α))

so that

vL(L×) ⊆ 1

n
vK(K×) =

1

n
Z

which is discrete.

Definition 5.1.2. Let L/K be a finite extension of local fields. We define the inertial
degree of L/K to be fL/K = [FL : FK ].

Definition 5.1.3. Let L/K be a finite extension of local fields. We define the ramification
index of L/K to be eL/K = vL(πK) where vL is the normalised valuation on L and πK is a
uniformiser for K.
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Theorem 5.1.4. Let L/K be a finite extension of local fields. Then [L : K] = eL/KfL/K
and there exists α ∈ OK such that OL[α] = OK.

Proof. To ease notation, write e = eL/K and f = fL/K . Since FL/FK is a separable extension,
the Primitive Element Theorem implies that there exists α ∈ FL such that FL = FK(α).
Let f(X) ∈ FK [X] be the minimal polynomial of α over FK and let f ∈ OK [X] be a monic
lift of f with deg f = deg f . We claim that there exists α ∈ OL lifting α and satisfying
vL(f(α)) = 1 so that f(α) is a uniformiser for L. Fix a lift β ∈ OL of α. If vL(f(β)) = 1
then we are done and set α = β. If not then set α = β + πL where πL is the uniformiser for
L. Taylor expanding f(α) around β we have

f(α) = f(β + πL) = f(β) + f ′(β)πL + bπ2
L

for some b ∈ OL. From this we see that

vL(f(α)) ≥ min{vL(f(β)), vL(f ′(β)) + 1, vL(b) + 1}

By assumption, vL(f(β)) ≥ 2 and vL(f ′(β)) = 0 since f ′(β) is a unit (f is separable so that
f ′(β) cannot vanish modulo m). It then follows that vL(f(α)) = 1.

Now write π = f(α). We claim that αiπj for i = 0, . . . , f − 1 and j = 0, . . . , e− 1 are an
OK-basis for OL.

We first show that the αiπj are linearly independent over K. Indeed, suppose we have∑
i,j aijα

iπj for some aij ∈ K not all 0. Let sj =
∑f−1

i=0 aijα
i. Since 1, αi, . . . , αf−1 are

linearly independent over OK , their reductions are linearly independent over FK . Hence
there exists some j such that sj 6= 0.

We claim that e | vL(sj) if sj 6= 0. Indeed, let k be an index for which |aij| is maximal.

Then a−1kj sj =
∑f−1

i=0 a
−1
kj aijα

i. Now, |a−1kj aij| ≤ 1 and is exactly 1 if and only if i = k. Now,

a−1kj sj 6≡ 0 (mod πL) since 1, α, . . . , αf−1 are linearly independent over FK . Hence a−1kj sj is a

unit whence v(a−1kj sj) = 0. Therefore

vL(sj) = vL(akj) + vL(a−1kj sj) ∈ vL(K×) = evL(L×) = eZ

and so e|vL(sj) as claimed.
We can now write

∑
i,j aijα

iπj =
∑e−1

j=0 sjπ
j = 0. Suppose that sj 6= 0 for some j. Then

vL(sjπ
j) = vL(sj) + j ∈ j + eZ. Hence no two terms in the summation can have the same

valuation. This then forces the summation to be non-zero which is a contradiction. Hence
αiπj are linearly independent over K.

We now claim that

OL =
⊕
i,j

OKαiπj

To this end, we make the following definitions

M =
⊕
i,j

OKαiπj

N =

f−1⊕
i=0

OKαi
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so that M = N + πLN + · · · + πe−1N . Now, 1, α, . . . , αf−1 span FL over FK so that
OL = N + πOL. Iterating this, we have

OL = N + π(N + πOL)

= N + πN + π2(OL)

...

= N + πN + π2N + · · ·+ πe−1N + πeOL
= M + πKOL

where we have used the fact that πe and πK have the same valuation so that they differ
by a unit. Iterating this process again, we have that OL = M + πnKOL for all n ≥ 1. In
particular, OL = M + πnLOL for all n ≥ 1 so that M is dense in OL. Now, M is the closed
unit ball in

⊕
ijKα

iπj ⊆ L with respect to the maximum norm on V (with respect to the

K-basis of L αiπj). Hence M must be complete whence M = OL.
Finally, since αiπj = αif(α)j is a polynomial in α, it follows that OL = OK [α].

Corollary 5.1.5. Let M/L/K be finite extensions of local fields. Then

fM/K = fL/KfM/L

eM/K = eL/KeM/L

Proof. The statement concerning the inertial degrees is immediate from the Tower Law.
The statement concerning the ramification indices follows from the Tower Law and the fact
that [M : K] = fM/KeM/K .

5.2 Unramified Extensions

Definition 5.2.1. Let L/K be a finite extension of local fields. We say that L/K is
unramified if eL/K = 1 (equivalently, fL/K = [L : K]) and totally ramified if fL/K = 1
(equivalently, fL/K = 1).

Lemma 5.2.2. Let L/K be a finite unramified extension of local fields and let M/K be a
finite extension. Then there is a natural bijection

HomK−alg(L,M)→ HomFK−alg(FL,FM) (1)

given by restriction to OL then reducing.

Proof. Fix a K-algebra homomorphism φ : L→M . By the uniqueness of extended absolute
values, φ acts as an isometry of the extended absolute values. In particular, φ(OL) ⊆ OM
and φ(mL) ⊆ mM . We then get an induced FK-algebra homomorphism

φ : FL → FM
[x] 7→ [ϕ(x)]

and so we get a homomorphism

HomK−alg(L,M)→ HomFK−alg(FL,FM)

We claim that this homomorphism is bijective. To this end, let α ∈ FL be a primitive
element of FL over FK and f(X) ∈ FK [X] its minimal polynimal. Let f(X) ∈ OK [X] be a
monic lift of f and α ∈ OL the unique root of f that lifts α by Hensel’s Lemma.

Since L is unramified over K, we have that [L : K] = fL/K = [FL : FK ] = deg f = deg f .
But f is irreducible over K and so we must have that L = K(α). We thus have the following
diagram

27



φ HomK−alg(L,M) HomFK−alg(FL,FM) φ

φ(α) {x ∈M | f(x) = 0 } {x ∈ FM | f(x) = 0 } φ(α)

∼ ∼

mod mM

Now the map in the second row of this diagram is an isomorphism by Hensel’s Lemma
thereby forcing the map in the top row to also be an isomorphism.

Theorem 5.2.3. Let K be a local field. For every finite extension `/FK there is a unique un-
ramified extension L/K with FL ∼= `. Moreover, L/K is Galois with Gal(L/K) ∼= Gal(`/FL).

Proof. Fix a primitive element α of `/FK with minimal polynomial f [X] ∈ FK . Let f(X) ∈
OK be a monic lift of f such that deg f = deg f . Set L = K(α) where α is a root of f .
Since f is irreducible, it follows that f is irreducible and so [L : k] = [` : FK ]. Moreover,
FL contains a root of f (namely the reduction of α) so that ` ↪→ FL over FK via α → α
(mod mL). Hence

[L : K] ≥ [FL : FK ] ≥ [` : FK ] = [L : K]

Equality must therefore hold throughout so that ` = FL and so L is unramified since
[L : K] = [` : FK ].

To show uniqueness, suppose we have two unramified extensions L and M of the same
degree over K. Then we have an isomorphism of their residue fields φ : FL → FM which
lifts uniquely to K-embedding φ : L → M by Lemma 5.2.2. Since [L : K] = [M : K], it
then follows that we must have M = L.

To prove the assertion regarding the Galois groups, note that Lemma 5.2.2 also provides
us with an isomorphism AutK(L)→ AutFK (FL) and so

|AutK(L)| = |AutFK (FL)| = [FL : FK ] = [L : K]

and so L/K is Galois with Galois group isomorphic to Gal(FL/FK).

Proposition 5.2.4. Let K be a local field and L/K an unramified extension. Let M/K be
a finite extension and fix an algebraic closure K̄ so that L,M ⊆ K̄. Then

1. LM/M is unramified.

2. Any subextension of L/K is unramified over K.

3. If M/K is unramified then LM/K is unramified.

Proof. Fix a primitive element α of FL/FK with minimal polynomial f [X] ∈ FK . Let
f(X) ∈ OK be a monic lift of f such that deg f = deg f . Then L = K(α) for some root α
of f whence ML = M(α).

Let g(X) ∈ FM [X] be the minimal polynomial of α over FM . Then g|f . Hensel’s Lemma
then implies that f admits a factorisation f = gh with g monic and lifting g. Then g(α) = 0
and g is irreducible over M [X] so that g is the minimal polynomial of α over M . Then

[LM : M ] = [M(α) : M ] = deg g = deg g ≤ [FLM : FM ] ≤ [LM : M ]

and so equality must hold throughout whence LM/M is unramified.
To prove the second part, let F be an intermediate extension of L/K. Then eL/K =

eL/F eF/K . Since eL/K = 1 and ramification indices are positive integers, it follows that
eF/K = 1.
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For the third assertion, we observe that

[LM : K] = [LM : M ][M : K] = fLM/MfM/K = fLM/K

since both LM/M and M/K are unramified.

Corollary 5.2.5. Let L/K be a finite extension of local fields. Then there exists a unique
maximal unramified intermediate field T of L/K. Moreover, [T : K] = fL/K.

Proof. Fix an algebraic closure K̄ of K and let T be the compositum of all unramified
intermediate extensions of L/K. Then by Proposition 5.2.4, T/K is an unramified extension.
We clearly have that [T : K] = fT/K ≤ fL/K by multiplicativity of the inertial degrees. Now
let T ′ be the unique unramified extension of K with residue field extension FL/FK . Then
the id : FT ′ = FL → FL lifts to a K-embedding T ′ → L by Lemma 5.2.2. Then

[T : K] ≥ [T ′ : K] = fL/K ≥ [T : K]

so equality holds throughout and so we must have that [T : K] = fL/K .

5.3 Totally Ramified Extensions

Theorem 5.3.1 (Eisenstein’s Criterion). Let K be a local field and f(X) =
∑n

i=0 aiX
i ∈

OK [X] a monic polynomial and πK a uniformiser for K. If πK |a0, . . . , an−1 but π2
K - a0 then

f is irreducible.

Proof. Suppose that f ∈ OK [X] is reducible. Then we can write f = gh for some g, h ∈
OK [X] monic and non-constant. Reducing modulo πK we have

gh = f = Xn

FK is an integral domain and so both g and h have zero constant term. This implies that
the constant terms of g and h are both divisible by πK . But this would imply that the
constant term of f is divisible by π2

K which is a contradiction.

Proposition 5.3.2. Suppose that L/K is finite extension of local fields and vK is the nor-
malised valuation on K, w the unique extension of vK to L. Then

e−1L/K = w(πL) = min{w(x)|x ∈ mL}

Proof. Let vL be the normalised valuation on L. Then w and vL differ by a constant - we
claim that such a constant is e−1L/K . By definition we have

eL/K = vL(πK) =⇒ 1 = e−1L/KvL(πK)

Since w extends vK we necessarily have that w(πK) = 1 so that w(πK) = e−1L/KvL(πK) as

claimed. Hence for all x ∈ L we have w(x) = e−1L/KvL(x). In particular for x = πL we then

have that w(πL) = e−1L/K . The final equality in the Proposition follows immediately since w
attains its minimum on πL.

Theorem 5.3.3. Let L/K be a totally ramified extension of local fields. Then L = K(πL)
and the minimum polynomial of πL over K is an Eisenstein polynomial. Conversely, if
L = K(α) for some primitive element α ∈ L and the minimum polynomial of α over K is
Eisenstein then L/K is totally ramified and α is a uniformiser for L.
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Proof. Write n = [L : K] and denote by vK the normalised valuation on K and w the unique
extension of vK to L. Then

[K(πL) : K]−1 ≤ e−1K(πL)/K
= min

x∈mK(πL)/K

w(x) = min
x∈mK(πL)/K

(− logp |NL/K(x)|1/n) ≤ 1

n

since πL ∈ mK(πL). Hence [K(πL) : K] ≥ [L : K] so that L = K(πL).
Now let f(X) = Xn + an−1X

n−1 + · · · + a0 ∈ OK [X] be the minimal polynomial of πL
over K so that πnL = a0 + a1πL + · · ·+ an−1π

n−1
L . Then

w(πnL) = nw(πL) = ne−1L/K =
n

n
= 1

and on the other hand

w(πnL) = w(a0 + a1π1 + · · ·+ an−1π
n−1
L )

= min
0≤i≤n−1

(vK(ai) + i/n)

so that vK(a0) = 1 and vK(ai) ≥ 1 for all other coefficients. Hence f is an Eisenstein
polynomial.

Conversely, suppose that L = K(α) where the minimal polynomial f(X) ∈ OK [α] of α
over K is an Eisenstein polynomial. Write f(X) = Xn + an−1X

n−1 + · · · + a0. Since f is
irreducible, all the roots of f have the same valuation. Indeed, the roots of f are just the
Galois conjugates of α and the action of Galois is an isometry on the absolute value. Hence

1 = w(a0) = nw(α)

so that w(α) = 1/n. Hence

e−1L/K = min
x∈mL

w(x) ≤ 1

n
= [L : K]−1

But [L : K] = eL/KfL/K so we must have that [L : K] = eL/K = n whence L/K is totally
ramified and α is a uniformiser.

Remark. In fact, OL = OK [πL].

5.4 Ramification Groups

Definition 5.4.1. Let K be a local field and write UK = O×K for its unit group. We define
the higher unit groups of K to be the filtration

· · · ⊆ U
(2)
K ⊆ U

(1)
K ⊆ U

(0)
K = UK

where U
(s)
K = U (s) = 1 + πsKOK .

Proposition 5.4.2. Let K be a local field. Then

UK�
U

(1)
K

∼= F×K

U
(s)
K�

U
(s+1)
K

∼= FK for all s ∈ N≥1

30



Proof. To prove the first isomorphism, note that the natural projection map UK = O×K → F×K
is surjective with kernel m×K = 1 + πKOK .

To prove the second isomorphism, define a surjective mapping

φ : U
(s)
K → FK

1 + πsKx 7→ x (mod πK)

We must first check that this is a group homomorphism. Indeed, fix 1+πsKx, 1+πsKy ∈ U
(s)
K .

Then

(1 + πsKx)(1 + πsKy) = 1 + πsK(x+ y + πsKxy)

which reduces to x+y modulo πK so that φ is indeed a homomorphism. It’s kernel consists of
those elements that are elements of 1 +πsk(πK)OK = U

(s+1)
K so the isomorphism follows.

Proposition 5.4.3. Let L/K be a finite Galois extension of local fields. Then there exists
a surjective homomorphism Gal(L/K)→ Gal(FL/FK).

Proof. Let T/K be the maximal unramified subextension of L/K. By Galois Theory, we
know that the natural map

Gal(L/K)→ Gal(T/K)

σ 7→ σT

is a surjection. Moreover, Lemma 5.2.2 gives us a diagram

Gal(L/K) Gal(FL/FK)

Gal(T/K) Gal(FT/FK)

∼

∼

It then follows that the mapping in the first row is a surjection.

Definition 5.4.4. Let L/K be a finite Galois extension of local fields. We define the inertia
group, denoted I(L/K), to be the kernel of the surjection Gal(L/K) → Gal(FL/FK).
Moreover, if T is the maximal unramified subextension in L/K then we call T the inertia
field of L/K.

Proposition 5.4.5. Let L/K be a finite Galois extension of local fields. Then I(L/K) is
trivial if and only if L is unramified.

Proof. This is immediate since I(L/K) is trivial if and only if Gal(L/K) ∼= Gal(FL/FK) if
and only if L is unramified.

Lemma 5.4.6. Let L/K be a finite Galois extension of local fields. Let σ be the image of
σ under the surjective mapping Gal(L/K) → Gal(FL/FK). Then for all x ∈ FL we have
[σ(x)] = σ([x]) where [·] is the Teichmüller Lift.

Proof. Consider the map

φ : FL → OL
x 7→ σ−1([σ(x)])

Then φ is clearly multiplicative and satsifies φ(x) ≡ x (mod πL). But the Teichmüller Lift
is the unique map satisfying these properties so we must have that σ−1([σ(x)]) = [x] whence
[σ(x)] = σ([x]).
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From now on, given a local field K, let vK denote the normalised valuation on K.

Definition 5.4.7. Let L/K be a finite Galois of local fields and s ≥ −1 ∈ R. We define
the s-ramification group of L/K to be

Gs(L/K) = {σ ∈ Gal(L/K) | vL(σ(x)− x) ≥ s+ 1 for all x ∈ OL }

Remark. We remark that the higher an s-ramification group that σ ∈ Gal(L/K) belongs
to, the less that it ‘moves an element of OL around’.

Proposition 5.4.8. Let L/K be a finite Galois extension of local fields. Then

G−1(L/K) ∼= Gal(L/K)

G0
∼= I(L/K)

Proof. It suffices to unravel the definitions. Indeed

G−1(L/K) = {σ ∈ Gal(L/K) | vL(σ(x)− x) ≥ 0 for all x ∈ OL }
= Gal(L/K)

since OL is Gal(L/K)-invariant. Moreover

G0 = {σ ∈ Gal(L/K) | vK(σ(x)− x) ≥ 1 for all x ∈ OL }
= {σ ∈ Gal(L/K) | σ(x) ≡ x (mod mL) for all x ∈ OL }
= I(L/K)

Proposition 5.4.9. Let L/K be a finite Galois extension of local fields and πL a uniformiser
of L. Then Gs+1(L/K) is a normal subgroup of Gs(L/K) for all s ∈ N. Moreover, the map

φ : Gs(L/K)�Gs+1(L/K)→
U

(s)
L�

U
(s+1)
L

σ 7→ σ(πL)

πL

is a well-defined injective group homomorphism which is independent of the choice of uni-
formiser πL.

Proof. Let φ be as defined in the Proposition but without the quotient. We first show that
φ is well-defined. Indeed, fix σ ∈ Gs(L/K). Then

v(σ(πL)− πL) ≥ s+ 1

so that σ(πL) = πL + πs+1
L x for some x ∈ OL. Hence σ(πL)

πL
= 1 + πsx ∈ U (s)

L .
We next show that φ is independent of the choice of uniformiser. Recall that uniformisers

are unique up to multiplication by units. Hence fix a unit u ∈ O×L . Then σ(u) = u+ πs+1
L y

for some y ∈ OL. Then

σ(πLu)

πLu
=

(πL + πs+1
L x)(u+ πs+1

L y)

πLu

= (1 + πs+1
L x)(1 + πs+1

L u−1y)

≡ 1 + πsL (mod U
(s+1)
L )

≡ σ(πL)

πL
(mod U

(s+1)
L )
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We now verify that φ is a homomorphism. Indeed,

φ(στ) =
σ(τ(πL))

πL
=
σ(τ(πL))

τ(πL)

τ(πL)

πL

≡ σ(πL)

πL

τ(πL)

πL
(mod U

(s+1)
L )

≡ φ(σ)φ(τ) (mod U
(s+1)
L )

where we have used the fact that τ(πL) is a uniformiser for L.
It remains to show that kerφ = Gs+1(L/K). On one hand, comparing definitions, we

have

kerφ = {σ ∈ Gs(L/K) | v(σ(πL)− π) ≥ s+ 2 }
Gs+1(L/K) = {σ ∈ Gs(L/K) | v(σ(z)− z) ≥ s+ 2 for all z ∈ OL }

so, clearly, Gs+1(L/K) ⊆ kerφ.
Conversely, fix σ ∈ kerφ ⊆ I(L/K). Given x ∈ OL, write x =

∑i
i=0 nfty[xn]πnL where

xn ∈ FL and [·] is the Teichmüller Lift. Then σ(πL) = πL + πs+2
L y for some y ∈ OL and so

σ(x)− x =
∞∑
n=1

[xn](σ(πL)n − πnL)

=
∞∑
n=1

[xn]((πL + πs+2
L y)n − πnL)

After expanding using the Binomial Theorem, it is then clear that v(σ(x) − x) ≥ s − 2 so
that σ ∈ Gs+1(L/K) as claimed.

It now follows immediately that Gs+1(L/K) is normal in Gs(L/K) since it is the kernel
of a group homomorphism.

Corollary 5.4.10. Let L/K be a finite Galois extension of local fields. Then Gal(L/K) is
solvable.

Proof. First observe that ⋂
s∈Z≥1

Gs(L/K) = 1

so that (Gs(L/K))s∈Z≥1
is a subnormal series of Gal(L/K) by Proposition 5.4.9. Moreover

Gs(L/K)�Gs+1(L/K)
∼= U

(s)
L�

U
(s+1)
L

∼= F

which is abelian for all s ≥ 0. The case where s = −1 is simply Gal(L/K)/I(L/K) ∼=
Gal(FL/FK) which is also abelian. Hence Gal(L/K) is solvable.

Corollary 5.4.11. Let L/K be a finite Galois extension of local fields and let p = charFK.
Then G1(L/K) is a p-group and it is the unique Sylow p-subgroup of G0(L/K) = I(L/K).

Proof. By Proposition 5.4.9, we have an embedding Gs(L/K)/Gs+1(L/K) ↪→ FL. Now, FL
is a p-group so the quotient

|Gs(L/K)|
|Gs+1(L/K)|
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is a power of p. In particular, so is the quotient

|G1(L/K)|
|Gt(L/K)|

for any t ≥ 1. But Gt(L/K) is trivial for large enough t so that |G1(L/K)| is a power of
p and so is a p-group. To see that it is a Sylow p-subgroup of G0(L/K), note that we also
have an injection

G0(L/K)/G1(L/K) ↪→ F×L

which has order prime to p so |Gal(L/K)|must be the highest power of p dividing |G0(L/K)|.
Moreover, G1(L/K) is normal in G0(L/K) so by Sylow’s Theorems, G1(L/K) is the unique
Sylow p-subgroup of G0(L/K).

Definition 5.4.12. Let L/K be a finite Galois extension of local fields. We call G1(L/K)
the wild inertia group and G0(L/K)/G1(L/K) the tame quotient.

Proposition 5.4.13. Let M/L/K be finite extensions of local fields with M/K Galois.
Then

Gs(M/K) ∩Gal(M/L) = Gs(M/L)

Proof. This follows immediately from the definition. Indeed

Gs(M/L) = {σ ∈ Gal(M/L) | vM(σ(x)− x) ≥ s+ 1 for all x ∈ OM }
= Gs(M/K) ∩Gal(M/L)

5.5 Herbrand’s Theorem

Definition 5.5.1. Let L/K be a finite Galois extension of local fields. We define a map

iL/K : Gal(L/K)→ Z ∪∞
σ 7→ min

x∈OL
vL(σ(x)− x)

Proposition 5.5.2. Let L/K be a finite Galois extension of local fields. Then

Gs(L/K) = {σ ∈ Gal(L/K) | iL/K(σ) ≥ s+ 1 }

Proof. This is immediate from the definition of the s-ramification group.

Proposition 5.5.3. Let L/K be a finite Galois extension of local fields and let α ∈ OL such
that OL = OK [α]. Then for all σ ∈ Gal(L/K) we have

iL/K(σ) = vL(σ(α)− α)

and is independent of the choice of α.
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Proof. Choose a σ ∈ Gal(L/K). Then it is immediate that iL/K(σ) ≤ vL(σ(α) − α). We
thus need to show that vL(σ(α)−α) ≤ iL/K(σ). To this end, fix x ∈ OL. Since OL is finitely
generated over OK by 1, α, . . . , αn−1, we can always find a polynomial g(X) =

∑n
i=0 biX

i ∈
OK [X] such that x = g(α). Since the bi are fixed by Gal(L/K), we then have

vL(σ(x)− x) = vL(σ(g(α)− g(α))

= vL

(
n∑
i=1

bi(σ(α)i − αi)

)
≥ vL(σ(α)− α))

where we have used the fact that σ(α)− α|σ(α)i − αi for all i ≥ 1 and so we are done.
Moreover, it is clear that this definition is independent of the choice of α since any other

α′ generating OL over OK is necessarily a conjugate of α.

Corollary 5.5.4. Let M/L/K be finite Galois extensions of local fields. Then

iM/L(σ) = iM/K(σ)

for all σ ∈ Gal(M/L).

Proof. Suppose that α ∈ OM is such that OM = OK [α]. Then also OM = OL[α] so the
Corollary follows immediately.

Proposition 5.5.5. Let M/L/K be finite extensions of local fields such that M/L and L/K
are Galois. Then for all σ ∈ Gal(L/K) we have

iL/K(σ) = e−1M/L

∑
τ∈Gal(M/K)

τ |L=σ

iM/K(τ)

Proof. If σ is the identity then both sides reduce to∞ so we may assume that σ ∈ Gal(L/K)
is not the identity. Let OM = OK [α] and OL = OK [β] for some α ∈ OM and β ∈ OL. Then

eM/LiL/K(σ) = eM/LvL(σ(β)− β) = vM(σ(β)− β)

Now, given τ ∈ Gal(M/K) we have iM/K = vM(τ(α) − α). Fix τ ∈ Gal(M/K) such that
τ |L = σ and denote H = Gal(M/L). Then∑

τ ′∈Gal(M/K)
τ ′|L=σ

iM/K(τ ′) =
∑

τ ′∈Gal(M/K)
τ ′|L=σ

vM(τ(α)− α)

=
∑
g∈H

vM((τg)(α)− α)

= vM

(∏
g∈H

[(τg)(α)− α]

)

Label a =
∏

g∈H [(τg)(α) − α] and b = σ(β) − β = τ(β) − β). It suffices to show that
vM(b) = vM(a). A fortiori, it suffices to show that b | a and a | b.

First observe that if z ∈ OL then we can write z =
∑n

i=0 ziβ
i for some zi ∈ OK . Then

τ(z)− z =
∑n

i=1 zi(τ(β)i − βi) is divisible by τ(β)− β = b.
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Now let F (x) ∈ OL[X] be the minimal polynomial of α over L. Explicitly, we can write
F (X) =

∏
g∈H(X − g(α)). If τF is the polynomial obtained by applying τ to each of the

coefficients of F then we have (τF )(X) =
∏

g∈H(X − (τg)(α)). Then all the coefficients of
τF − F are of the form τ(z) − z for some z ∈ OL so they are thus divisible by b. Hence
b | (τF − F )(α) = ±a.

Conversely, pick f ∈ OK [X] such that f(α) = β. Since f(α)− β = 0, we see that α is a
root of the polynomial f(X)− β so, in particular, it is divisible by the minimal polynomial
of α F so we must have that f(X)− β = F (X)h(x) for some h(x) ∈ OL[X]. Then

(f − τβ)(X) = (τf − τβ)(X) = (τf)(X) · (τh)(X)

Setting X = α we then have that

−b = β − τβ = (±a)(τh)(α)

so that a | b as claimed.

Definition 5.5.6. Let L/K be a finite Galois extension of local fields. Define a map

ηL/K(s) : [1,∞)→ [−1,∞)

by the formula

ηL/K(s) =

e−1L/K ∑
σ∈Gal(L/K)

min{iL/K(σ), s+ 1}

− 1

Theorem 5.5.7 (Herbrand’s Theorem). Let M/L/K be finite extensions of local fields with
M/K and L/K Galois. Then

Gs(M/K)H�H = Gt(L/K)

where t = ηM/L(s) and H = Gal(M/L).

Proof. To ease notation, write G = Gal(M/K). Fix a σ ∈ Gal(L/K) and let τ be an
extension of σ to M such that iM/K(τ) ≥ iM/K(τg) for all g ∈ H. We claim that

iL/K(σ)− 1 = ηM/L(iM/K(τ)− 1)

If this were indeed the case then we would have that

σ ∈ Gs(M/K)H

H
⇐⇒ τ ∈ Gs(M/K)

⇐⇒ iM/K(τ)− 1 ≥ s

Now, η is strictly increasing so

σ ∈ Gs(M/K)H

H
⇐⇒ ηM/L(iM/K(τ)− 1) ≥ ηM/L(s)

⇐⇒ ηM/L(iM/K(τ)− 1) ≥ t

⇐⇒ iL/K(σ)− 1 ≥ t

⇐⇒ iL/K(σ) ≥ t+ 1

⇐⇒ σ ∈ Gt(L/K)
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We now prove the claim iL/K(σ)−1 = ηM/L(iM/K(τ)−1). Observe that this is equivalent
to showing that

e−1M/L

∑
g∈H

iM/K(τg) = e−1M/L

∑
g∈H

min{iM/L(g), iM/K(τ)}

To demonstrate this, it suffices to show that

iM/K(τg) = min{iM/L(g), iM/K(τ)}

for all g ∈ H. We have that

iM/K(τg) = vM((τg)(α)− α)

vM((τg)(α) + g(α)− g(α)− α)

≥ min{vM((τg)(α)− g(α)), vM(g(α)− α)}
= min{iM/K(τ), iM/K(g)}
= min{iM/L(g), iM/K(τ)}

Now if iM/L(g) < iM/K(τ) then equality clearly holds throughout by the properties of the
ultrametric inequality. Conversely, if iM/L(g) > iM/K(τ) then the previous calculation shows
that iM/K(τg) ≥ iM/K(τ). But by assumption we have iM/K(τ) ≥ iM/K(τg) so we must have
the equality iM/K(τg) ≥ iM/K(τ).

Hence in either case the claim holds and we are done.

5.6 Upper Numbering

Proposition 5.6.1. Let L/K be a finite Galois extension of local fields. Then

ηL/K(s) =

∫ s

0

dx

[G0(L/K) : Gx(L/K)]

where for −1 ≤ x < 0 we take the convention

1

[G0(L/K) : Gx(L/K)]
= [Gx(L/K) : G0(L/K)]

which equals 1 when 1 < x < 0 so ηL/K(s) = s if −1 ≤ s ≤ 0.

Proof. Denote the integral by θ(s). Since iL/K(σ) is always an integer, it is clear that
both these functions are piecewise linear and the breakpoints occur at integers. It therefore
suffices to show that both functions agree at a point and have the same derivative away
from the breakpoints. We have

ηL/K(0) =

e−1L/K ∑
σ∈Gal(L/K)

min{iL/K(σ), 1}

− 1

=
| {σ ∈ Gal(L/K) | iL/K(σ) ≥ 1 } |

eL/K
− 1

=
|G0(L/K)|

eL/K
− 1

=
|I(L/K)|
eL/K

− 1

= 0

= θ(0)
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Now let s ∈ [−1,∞) \ Z. Observe that ∂y min{x, y} is 0 if x ≤ y and 1 if x > y so by the
Fundamental Theorem of Calculus we have

η′L/K(s) =
| {σ ∈ Gal(L/K) | iL/K(σ) ≥ s+ 1 } |

eL/K

=
|Gs(L/K)|
|G0(L/K)|

=
1

[G0(L/K) : Gs(L/K)]

= θ′(s)

Remark. Since ηL/K : [1,∞) → [1,∞) is continuous, strictly increasing and satisfies
ηL/K(−1) = −1 and ηL/K(s)→∞ as s→∞ we see that it is invertible. Write ψL/K = η−1L/K .

Lemma 5.6.2. Let M/L/K be finite extensions of local fields such that M/K and L/K are
Galois. Then

ηM/K = ηL/K ◦ ηM/L

so that

ψM/K = ψM/L ◦ ψL/K

Proof. Let s ∈ [−1,∞) and set t = ηM/L(s) and H = Gal(M/L). By Herbrand’s Theorem,
we have

Gt(L/K) ∼=
Gs(M/K)H

H
∼=

Gs(M/K)

H ∩Gs(M/K)
∼=
Gs(M/K)

Gs(M/L)

Hence

|Gs(M/K)|
eM/K

=
|Gt(L/K)|
eL/K

|Gs(M/L)|
eM/L

Now, the Fundamental Theorem of Calculus implies that

η′M/K(s) =
|Gs(M/K)|
|eM/K |

So that by the Chain Rule we have

η′M/K(s) = η′L/K(t)η′M/L(s) = η′L/K(ηM/L(s))η′M/L(s) = (ηL/K ◦ ηM/L)′(s)

Since ηM/K and ηL/K ◦ ηM/L both agree at 0, these functions must be the same.

Definition 5.6.3. Let L/K be a finite Galois extension of fields. We define the upper
numbering of the rammification groups to be the groups

Gt(L/K) = GψL/K(t)(L/K)

for t ∈ [1−,∞). We refer to the previous numbering as the lower numbering.
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Corollary 5.6.4. Let M/L/K be finite Galois extensions of local fields and H = Gal(M/L).
Given t ∈ [−1,∞) we have

Gt(M/K)H

H
∼= Gt(L/K)

Proof. Let s = ψL/K(t). By Herbrand’s Theorem we have

Gt(M/K)H

H
=
GψM/K(t)H

H
= GηM/L(ψM/K(t))(L/K)

= GψL/K(t)(L/K)

= Gs(L/K)

= Gt(L/K)

5.7 Application to Cyclotomic Fields

We will apply the results of this section in calculating the ramification groups of the
(pn)th cylcotomic field Qp(ζpn). Indeed, fix a rational prime p and a primitive (pn)th root of
unity ζpn ∈ Qp.

We first claim that the (pn)th cyclotomic polynomial

Φpn(X) = Xpn−1(p−1) +Xpn−1(p−2) + · · ·+Xpn−1 + 1

is the minimal polynomial of ζpn over Qp. Indeed, we have

Φpn(X) =
Xpn − 1

X − 1

so that, indeed, Φpn(ζpn) = 0. Note that Qp(ζpn) = Qp(ζpn − 1) so it suffices to show that
Φpn(X + 1) is the minimal polynomial of ζpn − 1 over Qp. It is clear that ζpn − 1 is a root
of this polynomial so we have that

Φpn(X + 1) =
(X + 1)p

n − 1

X
≡ Xpn−1 (mod p)

From this we see that every coefficient of Φpn(X + 1) is divisible by p except for the leading
coefficient. Moreover, Φpn(0 + 1) = Φpn(1) = p so that the constant term is not divisible by
p2. Hence Φpn(X + 1) is Eisenstein at p so it is irreducible. This furthermore implies that
L = Qp(ζpn) = Qp(ζpn − 1) is totally ramified of degree pn−1(p− 1) with uniformiser ζpn − 1
and ring of integers OL = Zp[ζpn − 1] = Zp[ζpn ].

We have an isomorphism (
Z�pnZ

)×
→ Gal(L/Qp)

m 7→ σm

where σm is the map σm(ζpn) = ζmpn . Fix σm ∈ Gal(L/K) and s ∈ (0,∞). We want to
determine when σm ∈ Gs(L/K). We calculate

iL/Qp(σm) = vL(σm(ζpn)− ζpn) = vL(ζmpn − ζpn) = vL(ζpn) + vL(ζm−1pn − 1) = vL(ζm−1pn − 1)
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since ζpn is a unit in OL. Note that ζm−1pn is a primitive (pn−k)th for the maximal k such that
pk | m− 1 and that we have a containment of fields K = Qp(ζpn−k) ⊆ L so that ζm−1pn − 1 is
a uniformiser for K. By definition, we have that eL/K = vL(ζm−1pn − 1). But we know that
eL/K = eL/Qpe

−1
K/Qp . Since both extensions are totally ramified, it then follows that

vL(ζm−1pn − 1) =
pn−1(p− 1)

pn−k−1(p− 1)
= pk

Hence

σm ∈ Gs(L/K) ⇐⇒ iL/K(σm) ≥ s+ 1 ⇐⇒ pk ≥ s+ 1

Now, since pk | m− 1, it follows that m = 1 + dpk for some integer d. But then σm(ζpk) =

ζ1+dp
k

pk
= ζpk . We thus have that σm ∈ Gal(L/Qp(ζpk)). Putting all this together, we have

that for all pk ≤ s ≤ pk−1 + 1 where s ∈ N and 1 ≤ k ≤ n− 1, we have

Gs(L/Qp) = Gal(L/Qp(ζpk))

Finally, when s ≥ pn−1, we have that Gs(L/K) = 1.
We would now like to transfer this to the upper numbering. We claim that ηL/Qp(p

k−1) =
k so that Gk(L/Qp) ∼= Gal(L/Qp(ζpk)). Indeed, the following is the graph of the function
we must integrate to obtain ηL/Qp

1
p−1

1
p(p−1)

1
p2(p−1)

p− 1 p2 − 1 p3 − 1

where we have used the fact that the jumps in the lower numbering are at pk − 1 for
1 ≤ k ≤ n− 1. We can verify that this is the case by first calculating

[I(L/K) : G1(L/K)] =
e−1L/K
pn−1

=
pn−1(p− 1)

pn−1
= p− 1

and then continuing calculating indices. Then

ηL/K(k) =
1

p− 1
(p− 1) +

1

p(p− 1)
(p2 − 1− (p− 1)) + · · ·+ 1

pk(p− 1)
(pk − 1− (pk−1 − 1))

= k

as claimed.

6 Local Class Field Theory

6.1 Infinite Galois Theory

Definition 6.1.1. Let L/K be an algebraic extension of fields. We say that L/K is sep-
arable if for every α ∈ L, the minimal polynomial of α over K is separable. We say that
L/K is normal if the minimal polynomial of α over K splits into linear factors in L[X]
for all α ∈ L. We say that L/K is Galois if it is normal and separable. If so, we write
Gal(L/K) = Aut(L/K).
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Definition 6.1.2. Let M/K be a Galois extension. We define the Krull topology on
Gal(M/K) to be the one with basis

{σGal(M/L) | σ ∈ G,L/K is finite }

Proposition 6.1.3. Let M/K be a Galois extension. Then Gal(M/K) is a profinite group4.

Proof. Proof omitted.

Remark. If M/K is finite then the Krull topology is just the discrete topology.

Definition 6.1.4. Let I be a poset with ordering ≤. We say that I is a directed system
if for all i, j ∈ I there exists k ∈ I such that i ≤ k and j ≤ k.

Definition 6.1.5. Let I be a directed system. An inverse system indexed by I is a
collection of topological groups Gi for i ∈ I and continuous homomorphisms fij : Gj → Gi

for i, j ∈ I such that i ≤ j, fii = idGi and fik = fij ◦ fjk whenever i ≤ j ≤ k.
Moreover, we define the inverse limit of the system (Gi, fij) to be the topological group

(with the subspace topology coming from the product topology)

lim←−
i∈I

Gi =

{
(gi) ∈

∏
i∈I

Gi

∣∣∣∣∣ fij(gj) = gi for all i ≤ j

}

Proposition 6.1.6. Let M/K be a Galois extension. The set I of finite intermediate Galois
extensions L of M/K is a directed system under inclusion. If L,L′ ∈ I with L ⊆ L′ then
we have a map

·|L′L : Gal(L′/K)→ Gal(L/K)

Then (Gal(L/K), ·|L′L )L∈I,L⊆L′ is an inerse system and the map

Gal(M/K)→ lim←−
L∈I

Gal(L/K)

σ 7→ (σ|L)L∈I

is an isomorphism of topological groups.

Proof. Proof omitted.

Theorem 6.1.7 (Fundamental Theorem of Galois Theory). Let M/K be a Galois exten-
sion. The map L 7→ Gal(M/L) defines an inclusion reversing bijection between intermedi-
ate extensions L/K of M/K and closed subgroups of Gal(M/K) with inverse H 7→ MH =
{m ∈M | σ(m) = m for all σ ∈ H }.

Moreover, L/K is finite if and only if Gal(M/L) is open in Gal(M/K) and L/K is Galois
if and only if Gal(M/L) is normal in Gal(M/K) from which we establish an isomorphism

Gal(M/K)

Gal(M/L)
→ Gal(L/K)

σ 7→ σ|L

Proof. Proof omitted.

4Recall that a topological group is profinite if and only if it is compact Hausdorff and totally disconnected
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6.2 Unramified Extensions and Weil Groups

Definition 6.2.1. LetK be a local field andM/K an algebraic extension. We say thatM/K
is unramified (resp. totally ramified) if L/K is unramified (resp. totally ramified) for
all finite intermediate extensions L of M/K.

Proposition 6.2.2. Let M/K be an unramified extension of local fields5. Then M/K is
Galois and Gal(M/K) ∼= Gal(FM/FK) via the reduction map.

Proof. Every finite subextension of M/K is unramified and, in particular, Galois so M/K
is Galois as well. We then have a commutative diagram

Gal(M/K) Gal(FM/FK)

lim←−
L/K

Gal(L/K) lim←−
L/K

FL/FK
∼ ∼

∼

so we must have that the top row is an isomorphism as well.

Definition 6.2.3. Let M/K be a finite unramified extension of local fields. We define
the Frobenius element of Gal(M/K), denoted FrobM/K , to be the unique element of
Gal(M/K) that acts as Frobenius on FM/FK . Moreover, since FrobM/K is compatible with
restriction, we can also define the Frobenius element for arbitrary unramified extensions of
local fields in the exact same way.

Definition 6.2.4. Let K be a local field and M/K a Galois extension. Let T = TM/K be
the maximal unramified subextension of M/K. We define the Weil group of M/K to be

W (M/K) = {σ ∈ Gal(M/K) | σ|T = FrobnT/K for some n ∈ Z }

which comes equipped with the topology induced by the basis

{σGal(L/T ) | σ ∈ W (M/K), L/T is finite }

Remark. The above situation is summarised in the following commutative diagram of
topological groups.

Gal(M/T ) W (M/K) FrobZT/K

Gal(M/T ) Gal(M/K) Gal(T/K)

∼

where FrobZT/K is equipped with the discrete topology. The topology that the Weil group is
endowed with ensures that this diagram is indeed a commutative diagram in the category
of topological groups.

Proposition 6.2.5. Let K be a local field and M/K a Galois extension. Then W (M/K) is
dense in Gal(M/K). If L/K is a finite subextension of M/K then W (M/L) = W (M/K)∩
Gal(M/L). Moreover, if L/K is also Galois then we have an isomorphism

W (M/K)

W (M/L)
∼= Gal(L/K)

via restriction.
5Note that an infinite extension of a local field is not necessarily a local field since it may be the case

that the residue field of the extension is infinite.
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Proof. By definition, W (M/K) is dense in Gal(M/K) if and only if for every open subset
U ⊆ Gal(M/K) we have W (M/K) ∩ U 6= ∅. Recall that

{σGal(M/L) | σ ∈ Gal(M/K), finite L/K }

is a basis for Gal(M/K) so it just suffices to show that for all σ ∈ Gal(M/K) and finite
subextensions L/K of M/K we have W (M/K) ∩ σGal(M/L) 6= ∅. But note that by the
Fundamental Theorem of Galois Theory we have

Gal(M/K)

Gal(M/L)
∼= Gal(L/K)

and the σGal(M/K) are just the cosets of all such factor groups so it suffices to show that
W (M/K) ∩Gal(L/K) 6= ∅ for all finite subextensions L/K. Equivalently, we just need to
show that W (M/K) surjects onto Gal(L/K) for all finite subextensions L/K of M/K.

To this end, let L/K be a finite subextension of M/K. Let T = TM/K be the maximal
unramified subextension of M so that TL/K = T ∩ L. Consider the diagram

0 Gal(M/T ) W (M/K) FrobZT/K 0

0 Gal(L/(T ∩ L)) Gal(L/K) Gal((T ∩ L)/K) 0

where the left hand side is surjective by field theory and the right hand side is surjective
since Gal(TL/K/K) is finite so is generated by the Frobenius element. The Five Lemma then
implies that we must have a surjection in the middle.

To prove the second assertion, let L/K be a finite subextension of M/K so that LTM/K ⊆
TM/L. Consider the commutative diagram

FrobZTM/K/K Gal(TM/K/K) Gal(FM/FK)

FrobZTM/L/L Gal(TM/L/L) Gal(FM/FL)

∼

∼

Which implies that the left-hand vertical map must be an inclusion. Hence

FrobZTM/L/L = FrobZTM/K/K ∩Gal(TM/L/L)

Hence if σ ∈ Gal(M/L) we have that

σ ∈ W (M/L) ⇐⇒ σ|TM/L ∈ FrobZTM/L/L

⇐⇒ σ|TM/L ∈ FrobZTM/K/K

⇐⇒ σ ∈ W (M/K)

Finally, to prove the third assertion, suppose that L/K is a finite Galois subextension
of M/K. Then Gal(M/L) is normal in Gal(M/K) whence Part 2 implies that W (M/L) is
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normal in W (M/K). Then

W (M/K)

W (M/L)
=

W (M/K)

W (M/K) ∩Gal(M/L)

∼=
W (M/K) Gal(M/L)

Gal(M/L)

=
Gal(M/K)

Gal(M/L)
∼= Gal(L/K)

where the second isomorphism comes from an isomorphism theorem and the third equality
from the fact that the Weil group is dense in the Galois group.

6.3 Main Theorems of Local Class Field Theory

Definition 6.3.1. Let K be a local field and L/K a Galois extension. We say that L/K is
abelian if Gal(L/K) is abelian.

Proposition 6.3.2. Let L/K and M/K be Galois extensions of fields. Then we have an
injective group homomorphism

Gal(LM/K)→ Gal(L/K)×Gal(M/K)

σ 7→ (σ|L, σ|M)

Moreover, this injection is an isomorphism if and only if L ∩M = K.

Proof. We must first check that this is a group homomorphism. It suffices to show that it
is a homomorphism in each component. To this end, fix σ, τ ∈ Gal(LM/K). We need to
show that (στ)|L = σ|Lτ |L. So fix α ∈ L so that (στ)L(α) = στ(α) = σ(τ(α)). Since L/K is
Galois, we must have that τ(α) ∈ L so that σ(τ(α)) = σ|L(τ |L(α)) = (σ|L ◦ τ |L)(α) whence
(στ)|L = σ|L ◦ τ |L. Similarly, (στ)|M = σ|M ◦ τ |M so it is indeed a group homomorphism.

The kernel is clearly trivial since if σ is trivial on L and M then it must be trivial on
LM .

Now, the embedding is an isomorphism if and only if [LM : K] = [L : K][M : K] or,
equivalently, [LM : M ] = [L : K]. Consider the restriction homomorphism

Gal(LM/M)→ Gal(L/K)

σ 7→ σ|L

Any automorphism in the kernel of this homomorphism necessarily fixes both L and M so,
in particular, it must fix LM . But the only such automorphism is the trivial one so the
kernel of this homomorphism must be trivial. Now, the image of this map is of the form
Gal(L/E) for some intermediate extension E of L/K. More precisely, E is the subfield of
L fixed by those automorphisms of Gal(LM/M) when restricted to L. Now, an element of
LM is fixed by Gal(LM/M) if and only if it lies in M so the image of the restriction map
is Gal(L/(L ∩M)). In particular, [LM : M ] = [L : L ∩M ] and this is [L : K] if and only if
L ∩M = K.

Corollary 6.3.3. Let K be a local field and fix an algebraic closure K of K. Then there
exists a unique maximal abelian extension of K inside K. Moreover, Kab contains Kur, the
maximal unramified extension of K.
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Proof. Let Kab be the compositum of all abelian extensions of K inside K. Then Proposition
6.3.2 implies that Kab is abelian and it must be the maximal such extension since any other
abelian extension must be contained in Kab.

Let Kur = TKsep/K ⊆ Kab where Ksep is the separable closure of K. Then Kur is clearly
the maximal unramified extension of K contained in Kab.

Theorem 6.3.4 (Local Artin Reciprocity). Let K be a local field. Then there exists a unique
isomorphism of topological groups

ArtK : K× → W (Kab/K)

called the Artin map such that

1. If πK is a uniformiser for K and FrobK = FrobKur/K then

ArtK(πK) = FrobK

2. If L/K is a finite abelian extension then

ArtK(NL/K(·))|L = idL

3. If M/K is a finite extension of local fields then for all x ∈M× we have

ArtM(x)|Kab = ArtK(NM/K(x))

4. If M/K is a finite extension of local fields and N(M/K) = NM/K(M×) then the Artin
map induces an isomorphism

ArtK : K
×
�N(M/K)→ Gal((M ∩Kab)/K)

Proof. To be proven later on.

Corollary 6.3.5. Let L/K be a finite extension of local fields. Then

N(L/K) = N((L ∩Kab)/K)

and

[K× : N(L/K)] ≤ [L : K]

with equality if and only if L/K is abelian.

Proof. Denote M = L ∩Kab. We then have isomorphisms

K×

N(L/K)
∼= Gal((L ∩Kab)/K) = Gal(M/K) = Gal((M ∩Kab/K) ∼=

K×

N(M/K)

The second equality is immediate from the same isomorphism.
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Theorem 6.3.6 (Existence Theorem). Let K be a local field. Then there is a one-to-one
inclusion reversing correspondence{

open finite-index
subgroups of K×

}
←→

{
finite abelian

extensions of K

}
H 7−→ (Kab)ArtK(H)

N(L/K)←− [ L/K

In particular, given finite abelian extensions L/K and M/K then

N(LM/K) = N(L/K) ∩N(M/K)

N((L ∩M)/K) = N(L/K) N(M/K)

Proof. We shall only prove the following aspect of this Theorem. Let L/K be a finite
extension and M/K abelian. Then N(L/K) ⊆ N(M/K) if and only if M ⊆ L. By
Corollary 6.3.5, we may assume that L is abelian. First suppose that M ⊆ L. Then we
have isomorphisms

K×

N(M/K)
∼= Gal(M/K) ⊆ Gal(L/K) ∼=

K×

N(L/K)

so that N(L/K) ⊆ N(M/K).
Now assume that N(L/K) ⊆ N(M/K). By Galois Theory, it suffices to show that if

σ ∈ Gal(Kab/L) and σ|M = idM . Now since W (Kab/L) is dense in Gal(Kab/L), it suffices
to prove the claim when σ ∈ W (Kab/L). By Artin Reciprocity we have an isomorphism

W (Kab/L) ∼= ArtK(N(L/K)) ⊆ ArtK(N(M/K))

Hence we can always find x ∈ M× such that σ = ArtK(NM/K(x)). Artin Reciprocity then
also tells us that σM = idM .

7 Lubin-Tate Theory

This section shall be concerned with explicitly constructing the maximal abelian exten-
sion K and the Artin Map ArtK .

7.1 Local Class Field Theory for Qp

We first provide a motivating example before continuing on to Lubin-Tate Theory.

Lemma 7.1.1. Let L/K be a finite abelian extension of local fields. Then

eL/K = [O×K : NL/K(OL)×]

Proof. Fix x ∈ L×, w the unique valuation on L extending vK and set n = [L : K]. By the
construction of w, we know that

vK(NL/K(x)) = nw(x) = fL/KvL(x)

We then have a surjection

K×

N(L/K)
→ Z

fL/KZ
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It is readily verified that the kernel of this homomorphism is

O×K
O×K ∩N(L/K)

=
O×K

NL/K(O×L )

By Class Field Theory we have

n = [K× : N(L/K)] = fL/K [O×K : NL/K(O×L )]

Corollary 7.1.2. Let L/K be a finite abelian extension of local fields. Then L/K is un-
ramified if and only if NL/K(O×L ) = O×K.

Let πK be a uniformiser for K so that K× is topologically isomorphic to 〈πK〉×O×K . By
the Existence Theorem, abelian extensions of K correspond to open finite-index subgroups
of K×. The groups

〈πmK〉 × U
(n)
K

for all m,n ≥ 0 are a basis for the topology of K× so every open finite-index subgroup
of K must contain a subgroup of this form. Hence to find the maximal abelian extension
of K, it suffices to take the compositum of all abelian extensions of K corresponding to
such subgroups. However, we know that N(LM/K) = N(L/K)∩N(M/K) so it suffices to
consider subgroups of the form

〈πK〉 × U (m)
K

〈πmK〉 × OK

The extension corresponding to the latter group is easy to understand. By the Corollary,
it is just the unramfied extension of K of degree m. The former is harder to understand
and is what we shall need Lubin-Tate Theory for. In any case, if we write Km/K for the
extensions of K corresponding to the former groups then we have Kab = KurL where L is
the union over m of all the Km.

Lemma 7.1.3. Let K be a local field. Then we have isomorphisms

W (Kab/K) ∼= W (KurL/K)
∼= W (Kur/K)×Gal(L/K)

∼= FrobZK ×Gal(L/K)

Proof. The first isomorphism follows from the previous discussion. The second follows from
the fact that Kab ∩L = K since L must be totally ramified. The third is because Kur/K is
unramified and, in particular, coincides to its maximal unramified subextension.

Example 7.1.4. Let K = Qp for some rational prime p and πK = p its uniformiser. Let

Km = K(Qp(ζpm))

where ζpm is a primitive (pm)th root of unity in Qp. We first calculate the norm group of
this extension. Recall that ζpm−1 is a uniformiser for this extension and the ring of integers

47



of Qp(ζpm). First observe that Qp(ζpm)× = 〈ζpm − 1〉 × Zp[ζpm ]×. Now, NKm/K(ζpm − 1) =
±Φpm(1) = ±p. Moreover, Lemma 7.1.1 implies that

n = [Km : K] = eKm/K = [O×K : N(Zp[ζpm ])×]

So that

N(Km/K) = NKm/K(K×m) = 〈p〉 × (1 + pnZp)

Now define

Qp(ζp∞) =
∞⋃
m=1

Qp(ζpm)

which is totally ramified since it is the nested union of totally ramified extensions. Hence
W (Qp(ζp∞)/Qp) = Gal(Qp(ζp∞)/Qp). To calculate the latter, we notice that

Gal(Qp(ζp∞)/Qp) ∼= lim
n

Gal(Qp(ζpn)/Qp)

∼= (Z/pnZ)×

∼= Z×p

It turns out that the inverse of this isomorphism is actually ArtQp restricted to Z×p . Explicitly
if m =

∑∞
i=0 aip

i ∈ Z×p for some ai ∈ { 0, . . . , p− 1 } and a0 6= 0, we have ArtQp(m) = σm
where σm ∈ Gal(Qp(ζp∞)/Qp) acts as

σm(ζpn) = ζmpn = lim
k→∞

ζ
∑k
i=0 aip

i

pn = ζ
a0+a1+···+an−1pn−1

pn

We can then read off the full Artin map from the diagram

Q×p W (Qab
p /Qp) σ

〈p〉 × Z×p W (Qur
p /Qp)×Gal(Qp(ζp∞)/Qp) (σ|Qur

p
, σ|Qp(ζp∞ ))

(pn,m) (FrobnQp , σ
−1
m )

ArtQp

∼ ∼

Theorem 7.1.5 (Local Kronecker-Weber Theorem). Given n ∈ N≥1, let ζn be a primitive
nth root of unity. Then

Qab
p =

∞⋃
i=1

Qp(ζn)

Qur
p =

⋃
(n,p)=1

Qp(ζn)

Proof. To be proven later on.

Definition 7.1.6. Let K be a local field, M/K a Galois extension and I the collection of all
finite Galois subextensions of M/K. For all s ∈ [−1,∞) we define the higher ramification
group

Gs(M/K) = {σ ∈ Gal(M/K) | σ|L ∈ Gs(L/K) for all L ∈ I }
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Remark. Note that we could equivalently define

Gs(M/K) = lim←−
L/K

Gs(L/K)

Example 7.1.7. Let K = Qp for some rational prime p. We are interested in calculating
Gs(Qab

p /Qp). Let Qpn be the unique unramified extension of Qp of degree n. Completely
analogously to the case for Qp(ζpm)/Qp, we have

Gs(Qpn(ζpm)/Qp) =


Gal(Qpn(ζpm)/Qp) if s = −1
Gal(Qpn(ζpm)/Qpn) if − 1 < s ≤ 0
Gal(Qpn(ζpm)/Qpn(ζpk)) if k − 1 < s ≤ k ≤ m− 1
1 if s > m− 1

for k = 1, . . . ,m− 1. Recall that by Artin Reciprocity, we have an isomorphism

K×

N(M/K)
∼= Gal((Kab ∩M)/K)

for any finite extension M of a local field K. Via some clever uses of isomorphism theorems
to determine the quotients, we may thus pass to the Artin map to obtain

Gs(Qpn(ζpm)/Qp) =



〈p〉 × U (0)

〈pn〉 × U (m)
if s = −1

〈pn〉 × U (0)

〈pn〉 × U (m)
if − 1 < s ≤ 0

〈pn〉 × U (k)

〈pn〉 × U (m)
if k − 1 < s ≤ k ≤ m− 1

1 if s > m− 1

Hence

Gs(Qab
p /Qp) ∼= lim←−

n,m

Gs(Qpn(ζpm)/Qp) ∼= lim←−
n,m

〈pn〉 × U (k)

〈pn〉 × U (m)
= U (k)

via the Artin map where k is chosen so that k − 1 ≤ s ≤ k.

Corollary 7.1.8. Let L/Qp be a finite abelian extension. Then

Gs(L/Qp) = ArtQp

(
N(L/Qp)U

(k)

N(L/Qp)

)
where k − 1 ≤ s ≤ k. In particular, L ⊆ Qpn(ζpm) for some n if and only if Gs(L/Qp) = 1
for all s > m− 1.

7.2 Formal Groups

Definition 7.2.1. Let R be a ring. A formal group over R is a formal power series
F (X, Y ) ∈ R[[X, Y ]] such that

1. F (X, Y ) ≡ X + Y (mod X2, XY, Y 2)

2. F (X, Y ) = F (Y,X)
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3. F (X,F (Y, Z)) = F (F (X, Y ), Z) in R[[X, Y, Z]]

Example 7.2.2. Let F be a formal group over OK where K is a complete valued field.
Then F (X, Y ) converges for all x, y ∈ mK so that mK is a group under the multiplication
operation

(x, y) 7→ F (x, y)

Example 7.2.3. Ĝa(X, Y ) = X + Y is the formal additive group.

Example 7.2.4. Ĝm(X, Y ) = X + Y + XY is the formal multiplicative group. Note that
X + Y + XY = (1 + X)(1 + Y ) − 1 so if K is a complete valued field then m

∼−→ 1 + m
via x 7→ 1 + x and the rule (x, y) 7→ x + y + xy is just the usual multiplication on 1 + m
transported to m.

Lemma 7.2.5. Let R be a ring and F a formal group over R. Then

1. F (X, 0) = X

2. There exists i(X) ∈ R[[X]] such that F (X, i(X)) = 0

Proof. We first claim that, given any formal power series g(X) =
∑

i≥1 aiX
i ∈ R[[X]] such

that g(X) ≡ a1X (mod X2) for some a1 ∈ R×, there exists a power series h(X) ∈ R[[X]]
such that g(h(X)) = X. To do this, we shall inducitively construct polynomials hn(X) =∑n

i=1 biX
i such that g(h(X)) ≡ (mod Xn+1). We then obtain the desired power series as

h = limn→∞ hn(X) which is well-defined since R[X] is X-adically complete.
Indeed, suppose that n = 1. Then we may set h1(X) = b1X with b1 = a−1. Then,

clearly, g(h1(X)) ≡ X (mod X2). Now assume that we have constructed hn−1(X) such
that g(hn−1(X)) ≡ X (mod Xn). Then g(hn−1(X)) ≡ X + cnX

n (mod Xn+1) for some
cn ∈ R. Now consider

hn(X) = hn−1(X) + bnX
n

We have

hn(X)k = (hn−1(X) + bnX
n)k ≡

{
hkn−1(X) if k > 1
hn−1(X) + bnX

n if k = 1
(mod Xn+1)

So we have

g(hn(X)) =
∑
k≥1

akhn(X)k =
∑
k≥1

ak(hn−1(X) + bnX
n)k ≡

∑
k≥1

akh
k
n−1 + abnX

n

= X + cnX
n + a1bnX

n

So we may take bn = −a−11 cn and we are done.
Now, to prove the first assertion, write f(X) = F (X, 0). Then f(f(X)) = F (F (X, 0), 0) =

F (X,F (0, 0)) = F (X, 0) = f(X). Now, by the claim, there exists h(X) ∈ R[X] such that
f(h(X)) = X. Then

F (X, 0) = f(X) = f(f(h(X)) = f(h(X)) = X

To prove the second assertion, first observe that by the first assertion and symmetricity,
we have

F (X, Y ) =
∑
m,n≥1

am,nX
mY n
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As in the proof of the claim, we shall construct ik(X) by induction such that ik(X) =∑k
i=1 biX

i with b1 = −1 and

F (X, ik(X)) ≡ 0 (mod Xk+1)

We will then take i(X) = limk→∞ ik(X).
First suppose that k = 1. Set i1(X) = −X. Then

F (X,−X) = X + (−X) +
∑
m,n≥1

am,nX
m(−X)n ≡ 0 (mod X2)

Now suppose that we have constructed ik−1(X). Set ik(X) = ik−1 + bkX
k. We have

Xm(ik−1(X) + bnX
k)n ≡ Xmik−1(X)n (mod Xk+1)

so that

F (X, ik(X)) = X − ik−1(X) + bkX
k +

∑
n,m≥1

Xm(ik−1(X) + bnX
k)

≡ X − ik−1(X) + bnX
k
∑
n,m≥1

Xmik−1(X)n (mod Xk+1)

≡ F (X, ik−1) + bnX
k (mod Xk+1)

Now, F (X, ik−1) ≡ 0 (mod X)k so F (X, ik−1) ≡ ckX
K (mod Xk+1) so

F (X, ik(X)) ≡ ckX
K + bnX

k (mod Xk+1)

so we can just take bn = −ck and we are done.

Definition 7.2.6. Let R be a ring and F,G formal groups over R. We define a homomor-
phism of formal groups f : F → G to be a formal power series f ∈ R[[X]] such that
f(X) ≡ 0 mod X

f(F (X, Y )) = G(f(X), f(Y ))

Remark. Let F be a formal group over a ring R. The endomorphisms f : F → F form a
ring EndR(F ) with addition +F given by (f +F g)(X) = F (f(X), g(X)) and multiplication
(f ◦ g)(X) = f(g(X)).

Definition 7.2.7. Let O be a ring. By a formal O-module we mean a formal group F
over O together with a ring homomorphism

[·]F : O → EndO(F )

such that for all a ∈ O we have [a]F (X) ≡ aX (mod X2).

Definition 7.2.8. Let K be a local field. We define a Lubin-Tate module over OK , with
respect to a uniformiser πK , to be a formal OK-module F such that

[π]F (X) ≡ Xq (mod π)

where q = |FK |. In other words, π acts as Frobenius on F .
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Example 7.2.9. Ĝm is a Lubin-Tate module over Zp with respect to p. Indeed, if a ∈ Zp,
define

[a]Ĝm(X) = (1 +X)a − 1 =
∞∑
n=1

(
a

n

)
Xn

First note that [a]Ĝm(X) = aX (mod X)2. To see that this is infact a ring homomorphism,
we note that we have the identities ((1+X)a)b = (1+X)ab and (1+X)a(1+X)b = (1+X)ab

by the usual continuity and density arguments (they hold for Z). Then

[p]Ĝm(X) =

p∑
i=1

(
p

n

)
Xn ≡ Xp (mod p)

Hence Ĝm is a Lubin-Tate module.

Definition 7.2.10. Let K be a local field with uniformiser πK and q = |FK |. A Lubin-Tate
series for πK is a formal power series e(X) ∈ OK [X] such that e(X) ≡ πKX (mod X2)
and e(X) ≡ Xq (mod πK). We let EπK denote the set of all Lubin-Tate series for πK . A
Lubin-Tate polynomial is a Lubin-Tate series of the form

uXq + πK(aq−1)X
q−1 + · · ·+ a2X

2) + πKX

for some unit u ∈ U (1)
K and a2, . . . , aq−1 ∈ OK .

Remark. Note that if F is a Lubin-Tate OK module for πK then [π]K is a Lubin-Tate series
for πK .

Proposition 7.2.11. Let K be a local field and πK a uniformiser for K. Let e1, e2 ∈
EπK be Lubin-Tate series for πK and a linear form L(X1, . . . , Xn) =

∑n
i=1 aiX

i for some
ai ∈ OK. Then there exists a formal power series F (X1, . . . , Xn) ∈ OK [[X1, . . . , Xn]]
such that F (X1, . . . , Xn) ≡ L(X1, . . . , Xn) (mod (X1, . . . , Xn)2) and e1(F (X1, . . . , Xn)) =
F (e2(X1), . . . , e2(Xn)).

Proof. Proof omitted.

Corollary 7.2.12. Let K be a local field and πK a uniformiser for K. Given a Lubin-Tate
series e ∈ EπK , there exists a unique power series Fe(X, Y ) ∈ OK [[X, Y ]] such that

Fe(X, Y ) ≡ X + Y (mod (X, Y )2)

e(Fe(X, Y ))) = Fe(e(X), e(Y ))

Corollary 7.2.13. Let K be a local field and πK a uniformiser for K. Given Lubin-Tate
series, e1, e2 ∈ EπK and a ∈ OK, there exists a unique power series [a]e1,e2(X) ∈ OK [[X]]
such that

[a]e1,e2(X) ≡ aX (mod X2)

e1([a]e1,e2(X)) = [a]e1,e2(e2(X))

Moreover, if e1 = e2 = e then we write [a]e = [a]e,e.
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Theorem 7.2.14. Let K be a local field with uniformiser πK. Then the Lubin-Tate OK-
modules are precisely the series Fe(X, Y ) with e ∈ EπK with formal OK-module structure
given by

a 7→ [a]e

Moreover, if e1, e2 ∈ EπK and a ∈ OK then [a]e1,e2 is a homomorphism Fe2 → Fe1. If
a ∈ O×K then it is an isomorphism with inverse [a−1]e2,e1.

Proof. The proof of this theorem is lengthy but not hard, it amounts to using the uniqueness
of all formal power series involved.

7.3 Lubin-Tate Extensions

Throughout this section, let K̄ be a fixed algebraic closure of a local field K and m = mK

the unique maximal ideal of its ring of integers.

Proposition 7.3.1. Let K be a local field. If F is a formal OK-module then m is an
OK-module under the operations

x+F y = F (x, y) for x, y ∈ m

a · x = [a]F (x) for a ∈ OK , x ∈ m

Proof. If x, y ∈ m then F (x, y) is a power series in K(x, y) ⊆ K with coefficients of absolute
value less than 1. Since K(x, y) is complete, this series thus converges to an alement of
mK(x,y) ⊆ m. The rest of the assertions are now immediate from the definitions of formal
groups.

Definition 7.3.2. Let K be a local field with uniformiser πK and F a Lubin-Tate module
for πK . Given n ∈ N≥1, we define the group of πn

K-division points of F to be

F (n) = {x ∈ mF | πnKx = 0 }

Example 7.3.3. Let K = Qp with π = p and consider the Lubin-Tate Zp-module F . Given
x ∈ F we have

pn · x = (1 + x)p
n − 1 = 0

so that 1 + x is a (pn)th root of unity. In other words,

Ĝm(n) = { ζ ipn − 1 | 0 ≤ i ≤ pn − 1 }

where ζpn is a primitive (pn)th root of unity. We thus see that Ĝm(n) generates Qp(ζpn).

Lemma 7.3.4. Let K be a local field with uniformiser πK and q = |FK |. Let e(X) =
Xq + πKX and fn(X) = e ◦ · · · ◦ e with f0(X) = X. Then fn has no repeated roots.

Proof. Fix x ∈ K. We claim, by induction on n, that if |fi(x)| < 1 for all 0 ≤ i ≤ n − 1
then f ′n(x) 6= 0. Indeed, first assume that n = 1. Then

f ′1(x) = e′(x) = qxq−1 + πK = πK

(
1 +

(
q

πK

)
xq−1

)
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Now, |q/πK | ≤ 1 since q ≡ 0 (mod πK) and |xq−1| < 1 by hypothesis so f ′1(x) cannot
possibly vanish.

Now assume it holds true for arbitrary n. We have

f ′n+1(x) = (qfn(x)q−1 + πK)f ′n(x) = πK

(
1 +

(
q

πK

)
fn(x)q−1

)
f ′n(x)

By assumption, |fn(x)q−1| < 1 and f ′n(X) 6= 0 by the induction hypothesis so that fn+1(x)
does not vanish.

To prove the lemma, assume that fn(x) = 0. We claim that |fi(x)| < 1 for all 0 ≤ i ≤
n−1. If this were indeed the case then we would have that f ′n(X) 6= 0 by the claim. Indeed,
by induction we have that

fn(X) = Xqn + πgn(X)

for some gn(X) ∈ OK . If fn(x) = 0 then we must have that |x| < 1 whence |fi(x) < 1 for
all i.

Proposition 7.3.5. Let K be a local field, πK a uniformiser for K and q = |FK |. If F
is a Lubin-Tate OK-module for πK then F (n) is a free OK/πnOK-module of rank 1. In
particular, it has qn elements.

Proof. By Theorem 7.2.14, all Lubin-TateOK-modules are isomorphic so all theOK-modules
F (n) are isomorphic. Now, by definition, πnF (n) = 0 and so the OK-module structure on
F (n) descends to a OK/πnOK-module structure. Now let F = Fe where e(X) = Xq + πX.
Then F (n) consists of the roots of the degree qn polynomial fn(X) = en(X) which has no
repeated roots by Lemma 7.3.4 so |F (n)| = qn.

Now fix λn ∈ F (n) \ F (n− 1). Then we have a homomorphism of OK-modules

OK → F (n)

a 7→ a · λn

whose kernel is exactly πnOK . But |OK/πnOK | = qn = |F (n)| so this must be infact an
isomorphism.

Corollary 7.3.6. Let K be a local field and πK a uniformiser for K. If F is a Lubin-Tate
OK-module for πK then

OK�πnOK
∼= EndOK (F (n))

UK�
U

(n)
K

∼= AutOK (F (n))

Definition 7.3.7. Let K be a local field, πK a uniformiser for K and F a Lubin-Tate
OK-module for πK . We define the field of πn

K-division points of F to be Ln,π = Ln =
K(F (n)).

Remark. Let F and G be two Lubin-Tate OK-modules for πK . Then K(G(n)) = K(F (n)).
Indeed, there exits an isomorphism of formal OK-modules f : F → G. Then G(n) =
f(F (n)) ⊆ K(F (n)). By symmetry, K(G(n)) ⊆ K(F (n)).

Theorem 7.3.8. Let K be a local field, π = πK a uniformiser and F a Lubin-Tate OK-
module for πK. Then Ln,π/K is a totally ramified abelian extension of degree qn−1(q − 1)
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with Galois group AutOK (F (n)) ∼= UK/U
(n)
K . More explicitly, given σ ∈ Gal(Ln/K) there

exists a unique u ∈ UK/U (n)
K such that

σ(λ) = [u]F (λ) for all λ ∈ F (n)

Moreover, if F = Fe where e(X) = Xq + π(aq−1X
q−1 + · · · + a2X

2) + πX is a Lubin-Tate
polynomial and λn ∈ F (n)\F (n− 1) then λn is a uniformiser of Ln and

Φn(X) =
en(X)

en−1(X)
= Xqn(q−1) + · · ·+ π

is the minimal polynomial of λn and, in particular, NLn/K(−λn) = π.
Finally, the above isomorphism induces an isomorphism

Gal(Lm/Ln) ∼= U
(n)
K�

U
(m)
K

for all m ≥ n.

Proof. Fix a Lubin-Tate polynomial

e(X) = Xq + π(aq−1X
q−1 + · · ·+ a2X

2) + πX

and set F = Fe. Then

Φn(X) =
en(X)

en−1(X)
= [en−1(X)]q−1 + π(aq−1[e

n−1(X)]q−2 + · · ·+ a2e
n−1(X)]) + π

is Eisenstein at π and is of degree qn−1(q − 1). If λn ∈ F (n) \ F (n− 1) then λn is a root of
Φn(X) so that K(λn)/K is totally ramified of degree qn−1(q − 1) and λn is a uniformiser of
this extension with NK(λn)/K(λn) = π.

Now fix σ ∈ Gal(Ln/K). Then σ induces a permutation of F (n) which is OK-linear.
Indeed,

σ(x) +F σ(y) = F (σ(x), σ(y)) = σ(F (x, y) = σ(x+F y)

σ(a · x) = σ([a]F (x)) = [a]F (σ(x) = a · σ(x)

for all x, y ∈ mLn and a ∈ OK . We thus have an injective homomorphism

Gal(Ln/K) ↪−−−→ AutOK (F (n)) ∼= UK�
U

(n)
K

But by Proposition 5.4.2 we have∣∣∣∣UK�U (n)
k

∣∣∣∣ = qn−1(q − 1) = [K(λn) : K] ≤ [Ln : K] = |Gal(Ln/K)|

so we must have equality throughout so that Gal(Ln/K) ∼= UK/U
(n)
K and, moreover, K(λn) =

Ln.
To prove the final assertion, note that we have a commutative diagram

Gal(Lm/K) UK�
U

(m)
K

Gal(Ln/K) UK�
U

(n)
K

∼

φ ψ

∼

55



It is then clear that

Gal(Lm/Ln) = kerφ ∼= kerψ =
U

(n)
K�

U
(m)
K

Theorem 7.3.9. Let K be a local field and πK a uniformiser for K. Then the πnK-division
field Ln has norm group

N(Ln/K) = 〈πK〉 × U (n)
K

Theorem 7.3.10 (Local Kronecker-Weber Theorem). Let K be a local field and πK a
uniformiser for K. If L∞ denotes the union of all πnK-division fields then Kab = KurL∞.

Proof. Proof omitted.

Theorem 7.3.11. Let K be a local field and πK a uniformiser for K. Then we have a
topological isomorphism ArtK completing the diagram

K× W (Kab/K) σ

〈πK〉 × UK W (Kur/K)×Gal(L∞/K) (σ|K , σ|L∞)

〈πm, u〉 (FrobmK , σ
−1
u )

∼
ArtK

∼ ∼

∼

where σu is characterised by σu(λ) = [u]F (λ) for any λ ∈
⋃∞
i=1 F (n).

Proof. Proof omitted.

7.4 Ramification Groups of Lubin-Tate Extensions

Theorem 7.4.1. Let K be a local field with uniformiser π = πK and q = |FK |. Then

Gs(Ln/K) =


Gal(Ln/K) if − 1 ≤ s ≤ 0
Gal(Ln/Lk) if qk−1 − 1 < s ≤ qk − 1, 1 ≤ k ≤ n− 1
1 if s > qn−1 − 1

Proof. Since Ln/K is totally ramified, Gal(Ln/K) coincides with its inertia subgroup so the
case where −1 ≤ s ≤ 0 is clear. Now suppose that 0 < s ≤ 1. Since jump-points occur
at integers, it suffices to determine G1(L/K). By Corollary 5.4.11, G1(L/K) is a p-Sylow

subgroup of Gal(Ln/K) ∼= UK/U
(n)
K . This group has order qn−1(q − 1) so that Gs(Ln/K)

is the unique subgroup of order qn−1. But this is exactly U
(1)
K /U

(n)
K
∼= Gal(Ln/L1) so the

Theorem is true in this case.

Now fix 1 6= u ∈ U (1)
K /U

(n)
K and let σu ∈ G1(Ln/K) be the corresponding automorphism.

Write u = 1 + επk for some ε ∈ UK and 1 ≤ k = k(u) < n. Fix a Lubin-Tate OK-module F
for πK and λ ∈ F (n) \ F (n− 1). Then λ is a uniformiser for Ln and so OLn = OK [λ]. We
claim that iLn/K(σu) = vLn(σ(λ)− λ) = qn. Indeed, we have

σu(λ) = [u]F (λ) = [1 + επk]F (λ) = F (λ, [επk]F (λ))
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Now,

[επk]F (λ) = [ε]F ([πk]F (λ)) ∈ F (n− k)\F (n− k − 1)

so that [επk]F (λ) is a uniformiser for Ln−k. Since Ln/Ln−k is totally ramified of degree qk

we must have that

[επk]F (λ) = ε0λ
qk

for some ε ∈ O×Ln . Now recall that F (X, 0) = X and F (0, Y ) = Y so that F (X, Y ) =
X + Y +XYG(X, Y ) for some G(X, Y ) ∈ OK so we have

σ(λ)− λ) = F (λ, [επk]F (λ])− λ
= F (λ, ε0λ

qk)− λ
= λ+ ε0λ

qk + ε0λ
qk+1G(λ, ε0λ

qk)− λ
= ε0λ

qk + ε0λ
qk+1G(λ, ε0λ

qk)

so that

iLn/K = vLn(σ(λ)− λ)) = qk

Hence

iLn/K(σu) ≥ s+ 1 ⇐⇒ qk(u)−1≤s

and therefore

Gs(Ln/K) = {σu ∈ G1(Ln/K) | qk(u) − 1 ≥ s }

=

{
Gal(Ln/Lk) if qk−1 < s ≤ qk − 1, k = 1, . . . , n− 1
1 if s > qk−1 − 1

Corollary 7.4.2. Let K be a local field with uniformiser π = πK and q = |FK |. Then

Gt(Ln/K) =


Gal(Ln/K) if − 1 ≤ t ≤ 0
Gal(Ln/Lk) if k − 1 < t ≤ k, 1 ≤ k ≤ n− 1
1 if t > n− 1

=

{
Gal(Ln/Ldte) if − 1 ≤ t ≤ n− 1
1 if t > n− 1

where we set L−1 = L0 = K.

Proof. The function we need to integrate in order to obtain ηLn/K(s) is

1
q−1

1
q(q−1)

1
q2(q−1)

q − 1 q2 − 1 q3 − 1
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After a moment’s glance, we see that

ηLn/K(s) =


s if − 1 ≤ s ≤ 0

(k − 1) +
s− (qk−1 − 1)

qk−1(q − 1)
if qk−1 ≤ s ≤ qk − 1

(n− 1) +
s− (qn−1 − 1)

qn−1(q − 1)
if s > qn−1

Inverting this, we have

ψLn/K(t) =


t if − 1 ≤ t ≤ 0
qdte−1(q − 1)(t− (dte − 1)) + qdte−1 − 1 if 1 ≤ t ≤ n− 1
qn−1(q − 1)(t− (n− 1)) + qn−1 − 1 if t > n− 1

Then

Gt(Ln/K) = GψLn/K(t)(Ln/K)

is in the form asserted.

Corollary 7.4.3. Let K be a local field. Then

Art−1K (Gt(Ln/K)) =

 U
(dte)
K �

U
(n)
K

if − 1 ≤ t ≤ n− 1

1 if t > n− 1

Lemma 7.4.4. Let L/K be a finite unramified extension of local fields and M/K a finite
totally ramified extension. Then LM/L is totally ramified and Gal(LM/L) ∼= Gal(M/K) via
restriction to M . Moreover, Gt(LM/K) ∼= Gt(M/K) via this isomorphism when t > −1.

Proof. Since L/K is unramified and M/K is totally ramified, we have L ∩M = K. Propo-
sition 6.3.2 then implies that we have an isomorphism

Gal(LM/K) ∼= Gal(L/K)×Gal(M/K)

But by Galois Theory, we have an isomorphism

Gal(LM/K)

Gal(LM/L)
∼= Gal(L/K)

We must therefore have that

Gal(LM/L) ∼= { 1 } ×Gal(M/K) ∼= Gal(M/K)

The statement regarding the ramification groups is then immediately clear.

Corollary 7.4.5. Let K be a local field and t > −1. Then

Gt(Kab/K) = Gal(Kab/KurLdte)

and

Art−1K (Gt(Kab/K)) = U
(dte)
K
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Proof. Let Km/K be the unique unramified extension of K of degree m. By Lemma 7.4.4
and Corollary 7.4.2 we have

Gt(KmLn/K) ∼= Gt(Ln/K) =

{
Gal(Ln/Ldte) if − 1 ≤ t ≤ n− 1
1 if t > n− 1

Now, Ln/Ldte is itself a totally ramified extension and KmLdte/Ldte is unramified. Hence
Lemma 7.4.4 again imples that

Gal(KmLdteLn/KmLdte) = Gal(KmLn/KmLdte) ∼= Gal(Ln/Ldte)

So that

Gt(KmLn/K) =

{
Gal(KmLn/KmLdte) if − 1 ≤ t ≤ n− 1
1 if t > n− 1

Hence

Gt(Kab/K) = Gt(KurL∞/K)

= lim←−
m,n

Gt(KmLn/K)

= lim←−
m,n
n≥dte

Gal(KmLn/KmLdte)

= Gal(KurL∞/K
urLdte)

= Gal(Kab/KurLdte)

Moreover,

Art−1K (Gal(Kab/KurLdte)) ∼= Art−1K

 lim←−
m,n
n≥dte

Gal(KmLn/KmLdte)


∼= lim←−

m,n
n≥dte

Art−1K (Gal(KmLn/KmLdte))

∼= lim←−
m,n
n≥dte

U
(dte)
K �

U
(n)
K

∼= U
(dte)
K

Corollary 7.4.6. Let L/K be a finite abelian extension of local fields. Then we have an
isomorphism

ArtK : K
×
�N(L/K)→ Gal(L/K)

Moreover, for t > −1 we have

Gt(L/K) = ArtK

(
U

(dte)
K N(L/K)

N(L/K)

)
Proof. By Herbrand’s theorem, the upper numbering on ramification groups is compatible
with quotients so we have

Gt(L/K) =
Gt(Kab/K)G(Kab/L)

G(Kab/L)
= ArtK

(
U

(dte)
K N(L/K)

N(L/K)

)
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