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1 Basic Theory

1.1 Fields

Definition 1.1.1. Let K be a field. An absolute value on K is a function |- | : K — Rx
such that

1. |z =01if and only if x =0

2. |zy| = |z|ly| for all z,y € K

3. |z +yl < o+ Jy|
In this case, we refer to K as a valued field.
Example 1.1.2. Q,R, C with |z| = v/2Z.

Remark. An absolute value defines a metric d(z,y) = |z — y| and thus induces a topology
on K.

Definition 1.1.3. Let K be a field and |- |,| - |" absoute values on K. We say that |- | and
| - |" are equivalent if they induce the same topology on K.

Proposition 1.1.4. Let K be a field and |- |1, |- |2 absolute valeis on K. Then the following
are equivalent

1. |- |1 and -]y are equivalent.
2. |r)y <1 <= |z[a <1 forallx € K.
3. There exists s > 0 such that |x|y = |z|5 for all zinK.

Proof.

(1) = (2): Suppose that |-|; and |- |2 are equivalent. Then these absolute values generate
the same topology on K so that any sequence that converges to a limit with respect to
| - |1 must also converge to the same limit with respect to | - |o. Let € K be such that
|z]; < 1. Then |z"|; = |z|} and so lim,_,o |2"|; = 0. But then we must also have that
lim, o0 |2™]2 = 0. Hence |2"|y = |z|§ < 1 for all n > 1 and, in particular, |z]y < 1.

(2) = (3): We first observe that the hypothesis |z[; < 1 <= |z]s < 1 implies that
|ZL’|1 >1 <— |I|2 > 1.

Now, since |- |; and |- |3 induce the same topology on K, given 0,1 # a € K there exists
an s > 0 such that |a|; = |a|j. We claim that, in fact, for all z € K we have |z|; = |z]5. To



this end, let 0,1 # = € K. Then there exists ¢t € R such that |z|; = |a|]}. Now fix a/b € Q
such that a/b < t. Then

a7 < |zl = [a™[1 < |2"|x

am

— |—| <1
T
am

= |—| <1
T o

= |aly’" < |zl

Similarly, if m/n > ¢, we can show that |a|}"" > |z|o. We thus have

laly"™ < ||y < |aly’™

Since |z| is continuous, the Sandwich Theorem then implies that |z|s = |al. But then

2l = laly = |al3t = |3

(3) = (1): Now suppose that there exists s > 0 such that for all z € K we have |z|; = |z|3.
Let Bj(x,r) be the open ball of radius r, centered at x with respect to |- |; and similarly for
By(x,r). Then

By(z,r)={ye K ||z —yl,<r}
={yeK|lz—yl/" <r}
={yeK|lz—yh<r'}
= By(z,7°%)

Now let U be an open set of the metric topology on K with respect to |- |;. Fix u € U. We
claim that we can excise an open |- |o-ball around u. Indeed, we can always find an r > 0
such that € Bi(z,r) C U. But by the above calculation, 2 € By(x,r'/*) C U and hence
U is also open in the metric topology on K with respect to | - |. By symmetry, we can
always excise an open | - |;-ball around any point in an | - [r-open set so that the two metric
topologies coincide.

]

Definition 1.1.5. Let (K, |-|) be a valued field. We say that |- | is non-archimedean if it
satisfies the strong triangle inequality |z 4+ y| < max{|z|, |y|} for all z,y € K. The induced
metric is also referred to as non-archimedean and the corresponding ultrametric inequality
d(z,z) < max{d(x,y),d(y, z)}. If this is not the case then |- | is said to be archimedean.

Proposition 1.1.6. Let K be a non-archimedean valued field, x € K and r € Ryy. Then
any point in the closed ball around x of radius r, Blx,r] is a centre.

Proof. Fix a z € Blz,r] and let y € B[z,r]. Then
[z =yl =[r =2+ 2 —y| <max{|z — 2|, |z — y|} < max{r,r}=r

and so y € Blz,r] whence B[z,r] C Blz,r]. By symmetry we then have that Blz,r] =
Blz,r]. O



Proposition 1.1.7. Let K be a non-archimedean valued field. Then
O={z|le]<1}

1s an open subring of K called the valuation ring of K with unit group given by O =
{z||z|=1}. Furthermore, given any r € (0,1] the sets {x | |z| <r} and {z | |z| <r}
are open ideals of O.

Proof. Tt follows immediately from Proposition that we can can always excise an open
ball around any point of O whence O and the other sets are open. We now show that O is a
subring of K. It is clear that |1| = |— 1] = 1 whence 1,—1 € O. Now suppose that z,y € O.
Then |z + y| < max{|z|,|y|} < 1 which implies that =,y € O. Similarly, |zy| = |z|ly| <1
and so also xy € O. Hence O is a subring of K.

Now suppose that x # 0. Then

r€O0" = |v|,|z] <1 = |z|=1

and so O* = {z | |z| = 1}. The fact that the other sets are ideals are checked by a similar
process. 0

Proposition 1.1.8. Let K be a non-archimedean valued field and (x,) C K a sequence. If
Ty — Tpo1 — 0 then (x,) is Cauchy. Furthermore, if K is complete then

1. (x,) converges.
2. if v, — 0 then Y " x, converges.

Proof. Fix ¢ > 0 and suppose there exists N € N such that |z, — x, — z,_1| < ¢ for all
n > N. Choose m > n. Then

‘xm - xn‘ = ’xm —Tm—1 T Tym—1 — Ty—1 + Tip—2 + Ty + -+ - — xn‘
< max{|T, — Tm_1l, - |[Tmar — Xal}
<e€
whence (z,,) is Cauchy. The rest follows immediately. O
1.2 Rings

Definition 1.2.1. Let R C S be rings. We say that s € S is integral over R if there exists
a monic f(X) € R[X] such that f(s) = 0.

Remark. Recall the following from linear algebra. Let A = (a;;) € Myxn(R). The adjoint
matrix A* = (aj;) of A is defined by aj; = (—1)” det(Ay;) where Ajj is the (n —1) x (n — 1)
matrix obtained from A by deleting the i** column and j** row. Then A*A = AA* =
det(A)L,.

Proposition 1.2.2. Let R C S be rings. Then s1,...,s, € S are integral over R if and
only if R[s1,...,s8,] € S is a finitely generated R-module.

Proof. First suppose that sq,...,s, are all integral over R. Note that

R C R[s1] C R[s1,8] C -+ C R[s1,...,8,] C S



with s; integral over R][si,...,s; 1]. By induction, it thus suffices to prove the case where
n = 1. Let s = s; and fix some monic f(X) € R[X] such that f(s) =0. Given g(X) € R[X]
the division algorithim for polynomials implies that there exists ¢,r € R[X] such that
9(X) = f(X)q(X) + r(X) where degr < deg f. Observe that g(s) = f(s)q(s) +r(s) = r(s)
whence 1, s, ..., s3)~1 generate R[s] as an R-module.

Now assume that R[sq,...,s,] is a finitely generated R-module and fix some generators
t1,...,tq € R[s1,...,8,). Let b € Rlsy,...,s,]. Then there exists some a;; € R such that

d
btz = Z CLZ'jtj
j=1

Letting A = (a;j), we then have that (bl — A)t = 0. Multiplying through by (bI — A)*
yields det(bI — A)t; = 0 for all j. Now, we can always find ¢; € R such that 1 = 3%

: it
j=1Citj
Multiplying this by det(bl — a) we get

d
det(bI — A) = " det(b] — A)cjt;

Jj=1

This is just equal to 0 and is monic when expanding out the definition of det(X 7 — A) so b
is integral over R. O

Corollary 1.2.3. Let R and S be rings. Suppose that s1,se € S are integral over R. Then
S1 + Sg9, 8182 are also integral over R. In particular, the set of all elements in S that are
integral over R is a ring called the integral closure of R in S.

Proof. Suppose that s1, sy € S are integral over R. Then by the Proposition, R[s1, s3] is a
finitely generated R-module. Using the Proposition in the opposite direction, it then follows
that s; + s9, 5152 are integral over R. O

1.3 Topological Rings

Definition 1.3.1. Let R be a ring and 7 a topology of R. We say that 7 is a ring topology
if R’s addition and multiplication operations are continuous maps. In this case, we refer to
R as a topological ring.

Example 1.3.2. Let K be a valued field. Then K is a topological ring with the topology
induced from the metric coming from the absolute value.

Definition 1.3.3. Let R be a ring and I < R an ideal. A subset U C R is called [-adically
open if for all € U there exists an n > 1 such that z + I" C U.

Proposition 1.3.4. Let R be a ring and I < R be an ideal. The set of all I-adically open
sets of R forms a topology on R called the I-adic topology.

Proof. 1t is vacuously true that @ is [-adically open. It is also immediately obvious from
the definition that R is [-adically open. Let U,V C R be I-adically open subsets. Then it
is immediate that their union is /-adically open. To see that their intersection is also open,
fix an x € U NV. Then there exists m,n > 1 such that xt + [" CU and z + 1™ C V. It
follows that z + Imax{mnt C U N V. ]

Proposition 1.3.5. Let R be a ring and I < R an ideal. Then the I-adic topology on R 1is
a ring topology.



Proof. Fix (z,y) € R x R. We want to show that the map

+:RxR—R
(a,b) = a+b

is continuous at (z,y). This amounts to showing that for any open neighbourhood W of
x +y in R, there exists an open neighbourhood U x V of (z,y) such that f(U x V) C W.
By the definition of the [-adic topology, it suffices to prove this when W is of the form
x +y+ I"™ for some m > 1. We claim that U = x 4+ I'" and y + I"™ define the required
neighbourhood (U, V) of (x,y). Given any (a,b) € U x V', we have that a + b is a sum of
x,y and some multiples of elements in I™ which is exactly what it means to be an element
of v +y+ I". Hence + is continuous. A similar argument applies to multiplication whence
the I-adic topology is a ring topology. O]

Definition 1.3.6. Let Ry, Ry, ... be a sequence of topological rings equipped with contin-
uous homomorphisms f, : R,+1 — R, for all n > 1. We define the inverse limit of the R;
to be the ring

fn(xn-i-l) =x,Vn >1 }

lim R,, = { (2) € [] Rn

together with coordinate-wise operations. The inverse limit ring has the subspace topology
induced from the product topology on [],, R,.

Proposition 1.3.7. Let Ry, Ry, ... be a sequence of topological rings equipped with contin-
uwous homomorphisms f, : Ry,yx1 — R, for all n > 1. Then the inverse limit topology on
@n R, is a ring topology.

Proof. We want to show that the mapping
+: (@Rn) X (@Rn) — l'&an

n

is continuous in the inverse limit topology. Since the inverse limit topology is just the
subspace topology induced by the product topology, it suffices to show that

+ (HRn> X <H3n> =TI R.
is continuous in the product topology. Observe that + is continuous if and only if +,, :
IL, R.xII, Rn — Ry, is continuous for all m. We note that [[ R, x[[, R. = [],,(Rnx R»)
and that we have a continuous projection mapping 7, : [[,(R, X R,) — R,, for each m.

Since R,, is a topological ring, the addition mapping ¢,, : R, X R,, — R,, is continuous
whence +,, = 7, © ¢, is continuous. ]

Definition 1.3.8. Let R be a ring and I < R an ideal. We define the I-adic completion
of R to be the ring

Ry = lim R/T"
Define the continuous ring homomorphism
v: R — lim R/I"

r— (r (mod I")),

We say that R is I-adically complete if v is a bijection. Furthermore, if I = xR for some
x € R, we shall often refer to the I-adic topology as the x-adic topology.
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1.4 The p-adic numbers
Let p denote any prime number for the rest of this course.

Definition 1.4.1. Let x € Q\ {0} and write it in the form = = p"a/b where n,a € Z,b €
Z\~o and (a,p) = (b,p) = 1. We define the p-adic absolute value on Q to be the function

|- |p: Q — Ry

given by

o, = {0 ifa=0
PT p ifa=pre

Proposition 1.4.2. The p-adic absolute value is a non-archimedean absolute value on Q.

Proof. By construction, |z|, = 0 if and only if z = 0. Now let x = p"a/b,y = p™c/d € Q be
non-zero with m > n. Then

m-n 4€

|xy|p = ‘p bd

—m

=p " =p "p " = |z|plylp
p

and

nod—+pT"ch

bd S pin = maX{’.fdp, ’y|p}

|z +yl, = |p

]

Definition 1.4.3. We define the p-adic numbers, denoted Q,, to be the completion of Q
with respect to | - |,. The valuation ring

Zy={z€Q,||z|, <1}
is called the p-adic integers.

Proposition 1.4.4. Z, is the closure of Z in Q,.

Proof. Fix a non-zero « € Z such that x = p"a with n > 0 and (a,p) = 1. Then |z|, <1 so
Z C Z,. Now, by definition, the set

Zpy={r€Q]||z[, <1}

is dense in Z,. Hence, it suffices to show that Z is dense in Z,). Fix some non-zero
x € Q\ {0} with z = p™a/b. Tt suffices to find a sequence (x;) € Z such that z; — 1/b as
1 — 00. We can then multiply through by ap™ to achieve a sequence that converges to x.
Now, (b, p) = 1 implies that there exists x;,y; € Z such that

br; + ply; = 1

for all ¢ > 1. We claim that x; is the desired sequence. We have that

b

1 i —i
xi__’ :’5’ bz; — 1|, = |p'yil, <p™* = 0
D p

as desired. O



Proposition 1.4.5. The non-zero ideals of Z, are p"Z, for n > 0. Furthermore, Z/p"Z =
Zp/anP;

Proof. Fix a non-zero ideal  <Z, and choose = € I such that |z|, is maximal (we can always
do this since the absolute value is discrete on Z,). Let y € I. By construction, |y|, < |z,
so |lyz7|, < 1 and so yz=t € Z,. Then y = (yz~')z € 2Z, whence I = 27Z,. It follows
immediately that if |z|, = p~" then I = (p").

Now consider the mapping

fn:Z —7Z,/D"Z,

Observe that p"Z, = {z | |z|, <p™™} and so
kerf,={ze€Z||z|,<p "} =p"Z

Furthermore, Z is dense in Z, and so every equivalence class in Z,/p"Z, will contain the
image of an integer whence f,, is surjective. f, thus induces an isomorphism

Z|p"L = Zp/anp

Corollary 1.4.6. Z, is a PID with a unique prime element p (up to units).
Proposition 1.4.7. The topology on Z induced by | - |, is the p-adic topology.

Proof. Fix a set U C Z. By definition, U is open with respect to | - |, if and only if for all
x € U, there exists n € N such that {y € Z| |y —z|, <p™™} C U. On the other hand,
U is open in the p-adic topology if and only if for all x € U, there exists n € N such that
v+ p"Z CU. But {y€Z||y—=x|, <p™} =z + p"Z so these topologies are equivalent
(in fact, they are equal). ]

Proposition 1.4.8. Z, is p-adically complete and is isomorphic to the p-adic completion
of 7.

Proof. The second assertion follows directly from the first via the proof of Proposition [1.4.5]
We thus need to show that the ring homomorphism

v:Ly— T&nzp/p”Zp

is bijective. We have that
re€kery <= x€p'Z,Vn = |z, <p "Vn <= |z, =0 <= =0

and so v is injective. Now let (z,) € lgnn Z,/p"ZL,. Define a; € {0,1,...,p — 1} recursively

such that z, = Z;:Ol a;p' is the unique representation of z, in the set 0,1,...,p" !. Then
T =Y 2 a;p" exists in Z, and x = x, = 2, (mod p") for all n > 0 and so v(x) = z, whence
v is surjective. O

Corollary 1.4.9. Every a € Z, has a unique expansiona =y - a;p’ witha € {0,...,p—1}.



2 Valued fields

2.1 Hensel’s Lemma

Definition 2.1.1. Let K be a field. We define a valuation on K to be a function v : K —
R U { 0o } such that

l.v(r) =00 <= =0
2. v(zy) = v(zr) +v(y)
3. v(z +y) > min{v(z),v(y)}

for all x,y € K. Here we are using the conventions that r + oo = co and r < oo for all
re Ru{oo}.

Remark. Let K be a valued field with valuation v. Then |z| = ¢ ) defines an absolute
value for any ¢ € R>;. Conversely, if | - | is an absolute value on K then v(z) = —log |z| is
a valuation on K.

Example 2.1.2. Let » € Q, and define v,(z) = —log, |z[,. Then v, is a valuation on Q
and if = € Z,\0 then v,(z) = n if and only if p" || x.

Example 2.1.3. Let K be a field and consider the field of formal Laurent series over K

K((T)):{ i a;T" | a; eK}

1>>—00
Then v (> a;T") = min{i € N | a; # 0} is a valuation of K((T)).

Definition 2.1.4. Let K be a valued field with absolute value |v|. We write O =
{x € K||z| <1} for the valuation ring of K, mg = {z € K ||z| =1} for its unique
maximal ideal and Fx = Ok /my for its residue field. We say that K is a complete valued
field if it is complete with respect to the mg-adic topology. Moreover, if f(X) € K[X] is a
polynomial then we say F' is primitive if max; |a;| = 1.

Theorem 2.1.5 (Hensel’s Lemma). Let K be a complete valued field . Suppose that
F(X) € K[X] is a primitive polynomial with reduction f(X) = F(X) (mod mg) € K[X].
If f(X) admits a factorisation f(X) = g(X)h(X) with g and h coprime then F(X) ad-
mits a factorisation F(X) = G(X)H(X) satisfying G(X), H(X) € Ok[X], G(X) = g(x)
(mod mg), H(X) = h(x) (mod mg) and degg = deg G

Proof. Let d = deg F' and m = deg g so that degh < d —m. Let Gy, Hy € Ok[X] be lifts of
g, h such that deg Gg = deg g and deg Hy < d — m. Since g and h are coprime, the division
algorithm for polynomials implies that there exists A, B € Ok|[X] such that

AGO + BHU =1 (mod mK)
Fix m € mg such that
F —GyHy= AGy+ BHy—1 (mod 7)

We claim that, by induction, we can construct sequences of polynomials G,, = Go+y ., 7P,
and H,, = Hy+ Y ., 7Q; such that for all n > 1 we have F = G,_1H,_1 (mod ") with
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each P, Q; € Ok[X] satisfying deg P, < m and deg Q; < d — m. We will then be able to
pass to the limit n — oo to obtain the desired G and H.

We now proceed by induction. First assume n = 1. Then it is clear that the Gy and
Hy we have constructed satisfy the hypotheses. Now assume that we have constructed
G,—1 and H,_ 1. We will construct polynomials P,, @, € Ok|[X] such that deg P; < m and
deg (); < d — m so that if we set G,, = G,,_1 + 7" P, and H, = H,,_1 + 1" (),, then we have
F = G,H, (mod 7). The latter requirement is equivalent to

F—Gu1Hy i =7 (Gp1Qn+ H,_1P,) (mod 7"™)

Rearranging and dividing by 7" yields
1

GOQn + HOPn = anlQn + anlp = F(F - anlanl) (Il’lOd 7T)
Now, AGy + BHy = 1 (mod 7) implies that F,, = AGyF,, + BHyF,, (mod 7) where F,, =
7 "(F — Gp_1H,—1). Since the leading coefficient of Gy is a unit, we can use the division

algorithm to write BF,, = QGo + P, with deg P, < deg Gy, P, € Ok[X]. Then
Fn = AGan -+ HO(Pn -+ QnQO) = Go(AFn + H()Q) + H()Pn = Fn (HlOd 7'(')

We can then define @),, to be the polynomial given by ignoring all the coefficients of AF,, +
HyQ that are divisible by 7 and we are done. O]

Corollary 2.1.6. Let K be a complete valued field and F(X) = >" ja; X" € K[X] a
polynomial. If aga, # 0 and F is irreducible then for all 1 < i < n we have |a;| <

max{|ao|, [an|}-

Proof. After scaling the coefficients of F' we may assume, without loss of generality, that F'
is primitive. Let r € K be minimal such that |a,| = 1. Then

F(X)=X"(a+ a1 X+ - +a,X""") (modm)

Suppose that max{|agl, |a,|} # 1. Then 0 < r < n and the above congruence lifts to a
non-trivial factorisation of G by Hensel’s Lemma. But F' is irreducible and so we must have
that max{|ao|, |a,|} = 1. O

Corollary 2.1.7. Let K be a complete valued field and F € O [X]| monic. If F (mod my)
has a simple root & € Fg then F has a unique simple root o € Ok lifting @.

Corollary 2.1.8. Z, contains all (p — 1) roots of unity.

Proof. First observe that Q, is complete with respect to the p-adic topology. Now consider
the polynomial X?~! —1 € Z,[X]. Then this polynomial is primitive and its reduction splits
into distinct linear factors over F,[X]. We may lift these simple roots to simple roots in Z,
via Hensel’s Lemma. O]

Remark. Let K be a non-archimedean valued field. Observe that if |z| > |y| then |x+y| =
|z|. Indeed, |z,| < max{|z|, |y|} = |z| and |z| < max{|z+y|, |y|} = |z +y|. More generally,
if © =3 2, z; and the |z;| are distinct then |z| = max; |z;].
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2.2 Extension of Absolute Values

Definition 2.2.1. Let K be a non-archimedean valued field and V' a K-vector space. A
norm on V is a function || - || : V' — Rs¢ such that

L. ||z|]] =0 <= =0
2. ||Mz]| = |A|||z|| for all A € K and z € V
3. |z +yl| < max{ll«]], [ly[[} for all 2,y € V

Moreover, we say that two norms || - ||; and || - || are equivalent if they induce the same
topology on V. In other words, there exists C, D > 0 such that C||z||; < ||z|l2 < D||z||1
for all z € V.

Proposition 2.2.2. Let K be a complete valued field and V' a finite dimensional K -vector

space. Gwen a K-basis x1,...,z, of V let any element x € V be written as © =Y., a;;.
Then ||x||max = max; |a;| defines a norm on'V and V' is complete with respect to this norm.
Moreover, if || -|| is any other norm on V' then || - || is equivalent to || - ||max and hence V is

complete with respect to || - ||.

Proof. We first check that x is a norm. Indeed, we have
||1Z|lmax = 0 <= mlax|ai| =0 <= g, =0foralli <= =0
Furthermore
1Az max = max |Aa;| = [A] max |a;| = [A][[2]]max
Finally,
|z + Y||max = max la; + b;] < miax(max{|a,~|, b;|}) < max{m?x ||, max |b;|}
= max{]|2|lmasx; |9/ lmax}

It is readily verified that V' is complete with respect to K. Indeed, given a Cauchy sequence
of vectors in V', we may take the limit of the coordinate-wise sequences which exist since K
is complete. The vector whose coordinates are such limits is exactly the limit of the original
Cauchy sequence.

Now let ||-|| be any other norm on V. We need to exhibit C, D > 0 such that C||z||max <
l|z]| < DI|z||max for all z € V. Let D = max;(||z;||). Then

n
E Ziay

i=1

||z]] = < max([ay, [[z;]]) < (max |a;[) (max [[z;]]) = DIz max

We find C' by induction on n = dim V. Suppose n = 1. Then
[|2[| = llava || = las| |21} = [|2]lmax] [ ]
so in this case we have C' = ||z1||. Now suppose that n > 2. Let
Vi=Ko1®...Kxi 1 ® Koy @+ - @ kay,

By the induction hypothesis, each V; is complete with respect to the restriction of || - || to
Vi. Hence V; is closed in V' and so, in particular, W = U ,(x; + V;) is closed in V. By the
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definition of V;, W does not contain 0. It then follows that there exists C' > 0 such that if
x € W then ||z|| > C. We claim that this C satisfies the claim.

Fix 0 #x =>" ax; € V and choose an index r such that |a,| = ||Z||max. Then
_ _ a Ay a a
H:L.Hm;xyle = Har 13:” = ‘ (l_ixl +oeee ;rlxrfl +xr + ;_jlwﬂrl + e+ CL_:«an
>C
since this last vector is an element of z, + V.. O

Lemma 2.2.3. Let K be a valued field. Then O is integrally closed in K.

Proof. Let x € K be such that |z| > 1. Now let aq,...,a,-1c0,. Then
lag + ayx + -+ + ap_ 12" < max |a;2"| < max |7 = |27 < |2"|
(] (]
Now suppose that x is integral over O so that we have

"+ a, 2" =0

Then we would have that

" = —(ap_1 2"+ 4 ag)
so that |2"| = |a,_12" ' 4+ -+ + ao| which is a contradiction. Hence x cannot be integral
over O. O
Lemma 2.2.4. Let K be a field and | - | : K — Rsq a function satisfying the first two

azioms of an absolute value. Then |-| is a non-archimedean absolute value on K if and only
if |x] < 1 implies that |x + 1| < 1 for all v € K.

Proof. First suppose that | - | is a non-archimedean absolute value on K. Suppose that
|z] < 1. Then |z + 1] < max{|z|,1} < 1. Conversely, suppose that |z + 1| < 1. Then
|z] = |z + 1 — 1] <max{|z + 1|,1} < 1 as desired.

Now suppose that |z| < 1 implies that |z + 1| < 1 for all € K. We need to show
that for all z,y € K we have |z + y| < max{|z|, |y|}. Suppose, without loss of generality,
that |z| < |y|. Then |z/y| < 1 so that |z/y + 1] < 1 whence |z + y| < |y|. Hence, clearly,
|+ y| < max{|z[, [y[}. O

Theorem 2.2.5. Let K be a complete valued field and L/K a finite extension. Then | - |
extends uniquely to an absolute value on L given by

L = | Ny (a) [V
Moreover, L is complete with respect to |a|y.

Proof. We first show that if such an absolute value |- |, on L were to exist then it is unique
and L is complete with respect to |- |z. Indeed, suppose that |- |7 is another absolute value
on L extending L. Then we can view |- |, and |- |, as norms on the finite dimensional
K-vector space L. By Proposition [2.2.2] these norms are equivalent and so generate the
same topology on L with respect to which L is complete. Going back to the viewpoint of

absolute values, Proposition then implies that there exists s > 0 such that ||, = |- |},
But |- ||k = | |}|k so we must have that s = 1.

12



We now show that the given formula indeed defines an absolute value on L. First note
that, given a € K, we have

la|]p =0 <= Npk(a) =0 <= a=0
Moreover, given «, 8 € K we have

Bl = | Ny (af) V5 = | Npjge(a) Ny (8)] R = | Npywe (o) R Ny (8) 18]

= lalzlBle

It remains to show that |- | satisfies the ultrametric inequality. Note that by Lemma [2.2.4]
it suffices to show that for all & € L we have |a|, < 1 if and ony if |a + 1|, < 1.
To this end, we first observe that

{OKGL||(I|L§1}:{CX€L|NL/K(OZ)EOK}

We claim that this set is the integral closure of Ok in L. If this were indeed the case then
we would have that | + 1|, < 1 since the integral closure is a ring.

Hence fix 0 # a € L such that Ny /(o) € Ok and let f(X) = ag++--+a,_1 X" 1+ X" €
K[X] be the minimal polynomial of o over K. By Corollary 2.1.6] we know that for all i
we have |a;| < max{|ag|, 1}. By the properties of the field norm, there exists an m > 1 such
that Nz k() = £ag'. Then

|ai] < max{Jao|, 1} = max{| N/x (a)['/", 1} =1

and so f(X) € Ok[X] and so « is integral over Ok.
Conversely, suppose that o € L is integral over Og. We need to show that N x(a) €

Of. Indeed, fix an algebraic closure K of K and let 0y, ..., 0, be the n distinct embeddings
of L into K where n = [L : K]. Then

NL/K(Oé) = (H O'Z'(Oé>>

for some d € N>;. But each o;(«) is integral over O since a is and so Ny k() is integral
over O as claimed. O

Corollary 2.2.6. Let K be a complete valued field and L/K a finite extension of K ad-
mitting a unique extension | - | extending | -|. Then Of is the integral closure of Ok in

L.

Corollary 2.2.7. Let K be a complete valued field and L/K an algebraic extension of K.
Then | - | extends uniquely to an absolute value on L.

Corollary 2.2.8. Let K be a complete valued field and L/ K a finite extension of K. Then
any o € Aut(L/K) acts as an isometry of the unique extension of |- | to L.

Proof. Let |- |, be the unique extension of |-| to L. Then it is easy to see that a — |o(«)|f,
is also an absolute value on L which extends |- | to L. Hence |o(a)|p = |a| for all « € L
whence o is an isometry of | - . O

13



2.3 Newton Polygons

Definition 2.3.1. Let S C R? be a subset. We say that S is lower convex if S is convex
and (z,y) € S implies that (z,z) € S for all 2 > y. Moreover, given any subset T C R?
we define the lower convex hull of 7" to be the minimal lower convex superset S DO T of
T. Explicitly, the lower convex hull of T is given by the intersection of all lower convex sets
containing 7.

Definition 2.3.2. Let K be a non-archimidean valued field with valuation v and f(X) =
ap+ a1 X + -+ a, X" € K[X] a polynomial. We define the Newton polygon of f to be
the lower convex hull of the set

{(1,v(a;)) | 0 <i<n wherea; #0}

We will usually identify the Newton polygon of f with the line in R? that bounds the lower
convex hull from below as in the following example.

Example 2.3.3. Consider Q, with the p-adic valuation v,. Let f(X) = X*+p*X3 —p3 X2+
pX + p®. Then the Newton polygon of f(X) is

vp(a;)

Qo

DO

—

Definition 2.3.4. Let K be a non-archimidean valued field with valuation v and f(X) €
K[X]. Let N be the Newton polygon of f. We make the following definitions:

1. We call the vertices of N the break points.
2. We call the edges of NV the line segments.

3. We call the horizontal length of a line segment its multiplicity.

Theorem 2.3.5. Let K be a complete non-archimidean valued field with valuation v and
f(X)=a+a; X+ +a,X" € K[X] a polynomial. Let L be a splitting field of f over K
and let w be the unique extension of v to L. If (r,v(a,)) — (s,v(as)) is a line segment of
the Newton polygon of f with slope —m then f has s — r roots in L with valuation m.

Proof. Without loss of generality, we may assume that a, = 1. Indeed, dividing f(X)
through by a, only shifts the Newton polygon of f(X) vertically and so does not change
any of its structure. Let a1, ..., a, be the roots of f(X) in L and label them so that

w(ay) = =w(ag) =m
w(@s 1) = -+ = wlas,) = ms
w(as11) = = w(ay) = M

14



with m; < --- < myy1. Now, each coefficient of f can be expressed in terms of symmetric
polynomials of the roots of f, we have

V(ap_g,) =W g Qoo | = ming w(ay .o, ) = s1my
1<ig - Fisy <n
1<iy##is; <n

where in the last line we have equality as one of the terms in the summation attains a
minimal valuation. Continuing in this fashion, we have

U((ln_(51+1)) =w E Qq o ai51+1 Z 1<i17£'ffl751 1<nw(ai1 Ce ailerl) = S1my1 + me
1<iy £ Fisy 41<n = s

V(p_s,) =W E Qi -y, | > - ;m#nl <nw(ai1 @i, ) = 81y + 59
e
1<ir e #igy <n - 2

and so on. Plotting the points (n — s;, > ., s;m;) (where so = 0) and drawing a line through
them gives us the Newton polygon of f. Indeed, the inequalities we have just demonstrated
show that all the points (i, v(a;)) lie either above or on this line. We thus have the following
picture

(n,0)

n — s1,51M)

(n — s1 — S9,81m1 + (S2 — S1)my)

Now, the first line segment (counting from the right), has length n — (n — s1) = s; and slope

7;)__(;—1_";11) = —mj as claimed. In general, the length of the k" segment is (n—s;_1)—(n—s3) =

Sk — Sk—1 and slope

(s1mq + Zf:f(si—H — 5i)Mip1 — (s1my + Zf:_f(siﬂ — 5;)Miy1 _ — (s — Sk—1)my,
(n —sk) — (n — Sk—1) Sk — Sk—1
= —mk
as claimed. O
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Corollary 2.3.6. Let K be a complete non-archimedean valued field with valuation v and
f(X) € K[X] an irreducible polynomial. Then the Newton polygon of f has a single line
segment.

Proof. 1t suffices to show that all roots of f have the same valuation. Let o and 8 be roots
in the splitting field L of f. Then there exists o € Aut(L/K) such that o(«) = 5. But then

v(a) = v(B) by Corollary 2.2.§ O

3 Discretely Valued Fields

3.1 Basic Facts

Definition 3.1.1. Let K be a nonarchimidean valued field with valuation v. We say that K
is a discretely valued field (and v is a discrete valuation) if v(K ™) is a discrete subgroup
of R. This is equivalent to v(K ™) being an infinite cyclic group.

Definition 3.1.2. Let K be a complete discrete valuation field. We say that K is a local
field if it has finite residue field.

Definition 3.1.3. Let K be a discrete valuation field. We define a uniformiser of K to
be any element m € K such that v(7) > 0 and v(7) generates v(K*). This is equivalent to
v(m) having minimal positive valuation.

Example 3.1.4. Q,Q, with valuation v, are discrete valuation fields. @, is a local field
with uniformiser p. Moreover, K ((T')) with valuation v (3 a,T") = infn|a, # 0 is a

n>>—o0

discrete valuation field with uniformiser 7" and Ok )y = K[[T]].

Proposition 3.1.5. Let K be a discrete valuation field with uniformiser w. Let S C Ok be
a complete set of coset representatives of Ok /mg = Fx containing 0. Then

1. The non-zero ideals of Ok are n"Ok.

2. Ok is a principal ideal domain with unique prime m (up to multiplication by units)
and myg = 1Ok

3. The topology on Ok induced by the absolute value is the m-adic topology.
4. If K 1s complete then Ok is m-adically complete.

5. If K is complete then any x € K admits a unique expansion

o0

T = E a,m"

n>>—oo
for some a, € S.

. The completion K is also a discrete valuation field with © a uniformiser and

D

OK/W"OK = OE/W"OR
via the natural map.

Proof. The proof of this Proposition is exactly the same as that for Q, with K replacing Q,
and 7 replacing p. O
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Proposition 3.1.6. Let K be a discretely valued field. Then K is a local field if and only
if Ok is compact.

Proof. Fix a uniformiser m of K and suppose that K is a local field. We claim that Ok
is sequentially compact. This is indeed sufficient since the topology on K is the metric
topology induced by the absolute value. By induction, it is easy to see that for all n > 1,
Ok /7" O is finite. Indeed, the base case is clear since K is a local field. Now,

(’)K/W”HOK = (OK/ WnOK> (WHOK/ W"“QK)

The first term is finite by the induction hypothesis and the second term is isomorphic to Fx
via the isomorphism z — 7! "x.

Now let (z;) € Ok be a sequence. Then we can always find a subsequence (z;) of (x;)
which is constant modulo 7 since F is finite. Similarly, we can find a subsequence ()
of (1) which is constant modulo 72. Continuing in this way, we construct a sequence ()
of Ok such that (z,,;) is constant modulo 7. Then the sequence (;;):2; is Cauchy since
|z;; — x| < |m) for all j < i. Since Ok is m-adically complete, this sequence converges
to an element of Ok so that (x;) has a convergent subsequence. Hence Ok is sequentially
compact as claimed.

Now suppose that Ok is compact. We need to show that K is complete and F is finite.
Observe that Ok and 77Ok are isomorphic as topological rings for any n > 0 and so the
latter is also compact and thus completd’] Since any element of K takes the form 7"u for
some n € Z and unit u € O, it follows that

K= UW‘"OK

n>0

is complete. Moreover, the canonical projection map Og — Fg is continuous when Fy is
equipped with the discrete topology and so Fx is compact. But a discrete space is compact
if and only if it is finite so we must have that Fx is finite as desired. O]

Definition 3.1.7. Let R be a ring. We say that R is a discrete valuation ring if it is a
principal ideal domain with a unique prime element up to multiplication by units.

Proposition 3.1.8. Let R be a ring. Then R is a discrete valuation ring if and only if R
1s the valuation ring of some discrete valuation field.

Proof. First suppose that R is a discrete valuation ring with 7 its unique prime. Then by
uniqueness of prime factorisation we have that every 0 # x € R admits a unique factorisation
x = m"u for some n € N and u € R*. Define a discrete valuation on R by

U(x):{ n o ifz#0

oo ifx=0

which extends uniquely to K = Frac(R) so that K is a discrete valuation field. We claim
that R = O. We first observe that K = R[1] since any non-zero element of K is of the
form 7"u for some n € Z and u € R*. Then v(n"u) =n € N <= 7"u € Randso R = Ok
as claimed.

Conversely, suppose that R is the valuation ring of some discrete valuation field. Then
it is immediate by Proposition that R is a principal ideal domain with a unique prime
element up to units. O

'Recall that any compact metric space is complete.
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Definition 3.1.9. | Let K be a valued field with residue field Fr. We say that K is of
equal characteristic if char K = char Fg. On the other hand, we say that K has mixed
characteristic otherwise.

Remark. We remark that the only possible examples of mixed characteristic valued fields
are the ones where char K = 0 and charFg > 0.

3.2 Teichmuller Lifts

Definition 3.2.1. Let R be a ring. We say that R is perfect if either char R = 0 or if when
char R = p then the Frobenius endomorphism z — 2P is an automorphism. The latter case
is equivalent to every element of R having a unique p™* root.

Remark. We remark that a field K is perfect if and only if every extension of K is separable.

Definition 3.2.2. Let K be a discrete valuation field and 7 € K a uniformiser. We define
the normalised valuation of K to be the unique valuation vg in the equivalence class of
v such that vg(m) = 1.

Example 3.2.3. vg, = v,

Lemma 3.2.4. Let R be a ring and x € R an element. Assume that R is x-adically complete
and that R/xR is perfect of characteristic p. Then there exists a unique map

[]:R/zR — R

called the Teichmdiller lift such that [a] = a (mod x) and [ab] = [a][b] for all a,b € R/xR.
Furthermore, if R itself has characteristic p then [-] is a Ting homomorphism.

Proof. Fix a € R/zR. Since R is perfect, for each n > 0 there exists a unique (p~")" root

of a, label it a?"". Now let a,, € R be an arbitrary lift of a? . Write 3, = o?". We first
claim that [a] = lim,_, £, exists and is independent of the choice of lifts. To ease notation,
write [a] = lim,, o0 By-

First observe that if the limit exists then [a] is independent of the choice of lifts. Indeed,
suppose that 3, and [ are a choice of lifts. Then Sy, 55, 85, B4, - .. is also a choice of lifts
and converges and so we must have that lim,, . £, = lim,_,~, 4,. We must hence show that
Bni1 — Bn — 0 z-adically. We have that

n+1 n n n
Bur = Bp = aiyy —ap = (ap,)" —ap

Now,
ab = (@ """V =a, (mod z)

so that o, — a;,, = 0 (mod z). Raising this to the (p")" power and using the Binomial
Theorem and the fact that R/x R has characteristic p shows that, in fact,

(afLH)p" — aﬁn =0 (mod xpn)

and so (f3,,) is Cauchy. Since R is complete, it then follows that lim,,_,, 5, exists. To see that
a = [a] (mod z), we first note that the natural projection map R — R/xR is continuous if
we equip R/xR with the discrete topology so that

lim (o) = lim (a? ")*" = lim a =a (mod z)
n—00 n—00 n—r00
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We next show that [-] is multiplicative. Fix b € R/zR with ~,, € R lifting b* " for all n > 0.
Then oy, lifts (ab)?”" = a? "b*"". Then

[ab] = lim o ~?" = <1im aﬁn) (lim 7??) = [a][b]

n—oo n—oo n—oo

We next show uniqueness of [-]. Suppose that ¢ : R/tR — R another map satisfying the
above properties. Then ¢(a? ") = a? " mod z and so

la] = lim ¢(a”" )" = lim ¢(a) = é(a)

n—o0 n—oo

Finally, suppose that R has characteristic p. Then a,, + v, lifts a?~1 +?~1 = (a + b)? " by
Freshman’s Dream so that

[a+b] = lim (a, + B,)7" = lim a?" + 2" = [a] + [D]
n—oo n— oo
So [-] is additive and multiplicative and [1] = 1 so that [-] is a ring homomorphism. O

Example 3.2.5. [0] =0 and [1] = 1. If R = Z,, then [] : F, — Z, satisfies [z]P~! = [2F7!] =
[1] = 1 for all non-zero x so that [z] is the unique (p — 1) root of unity lifiting x € F,.
Recall that by Hensel’s Lemma, we proved the existence of these roots and the Teichmiiller
Lift then gives us an explicit description of them.

Theorem 3.2.6. Let K be a complete discretely valued field of equal characteristic p such
that Fg is perfect. Then K = F((T)).

Proof. Since every discrete valuation field is the field of fractions of its valuation ring, it
suffices to show that O = Fg[[T]]. Since K has characteristic p, so does Fx so that
[[] : Fx — Ok is an injective ring homomorphism. Fix a uniformiser 7 € Ok and define a
ring homomorphism

FK — OK
Z a, T" — Z[an]ﬂ"
n=0 n=0
By Part 5 of Proposition [3.1.5] this mapping is surjective. The injectivity is clear by injec-
tivity of [ay]. -
Corollary 3.2.7. Let K be a local field of equal characteristic p. Then K = F,((T')) where
4 p-adic analysis

4.1 Mahler’s Theorem

Lemma 4.1.1. Let K be a complete valued field with absolute value | - | and assume that
Q, C K and|-l|lg, = |- lp Let f(X)=>7pa; X" € K[[X]] be a power series. If f(X)
converges on a (closed or open) disc D then f(X) is continuous on that disc.
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Proof. Let z,y € D. We assume that x # 0. Suppose there exists a 6 > 0 such that
|t —y| < § and 6 < |z|. It follows immediately from the ultrametric inequality that
|z| = |y|. Then

Z(aixi — a;y")

1=0

[f(x) = fy)| =

< T aa)
< I?Zaoxﬂazx a;y'|}
= max{la;|(z —y)(@" " + 2"y + o a2y +y T}

We now observe that
4oyt 4y < max {|2" Yy Y = |2t

|:L,n—1 _’_l,n—
1<i<n

Hence
) ) )
- < ) . i—1 o P
| f(x) f(y)l_lglg]x{\azllx yllx| }<|x|rg1§;<(|ale)

Now by hypothesis, f(X) converges on a disc which means the absolute values of its terms
converges to 0 on the same disc. Hence |a,x™| is bounded above by some real constant. We
may therefore, given € > 0, make |f(z) — f(y)| < € by choosing a reasonable § < |z|.

The case where x = 0 is an immediate consequence of the convergence of f(X)on D. [

Definition 4.1.2. Let R be a ring. We define the formal exponential series over R to
be

and the formal logarithm series over R to be

e}

log(1+ X) = Z(—l)

n=0

n
n-17_

n

Proposition 4.1.3. Let K be a complete valued field with absolute value || and assume that
Q, C K and that |- ||, = | - |,- Then exp(x) converges when |z| < p~/®=Y and log(1 + z)
converges for |x| < 1. Moreover, they define continuous maps

exp:{z e K||z|<p VP V} 5 Ok
log: {zeK|lz|<1}— K

Proof. Let v = —log,| - | be the valuation on K extending v,. Trivially, we have v(n) <
log,(n) and so

mn

v (?> > no(z) — v(n) > no(z) — log,(n)

which tends to oo if v(z) > 0 and so log converges when |z| < 1.
To prove the assertion concerning exp, first observ that v(n!) = w where s,(n) is
p—1 p

the sum of the p-adic digits of n. Then

v (%T) > no(z) — v(n!) = no(z) — ”p%pi”) > no(z) — Z% —n (v(m) - ﬁ) >0

which tends to co as n — oo if v(z) > Iﬁ. O

2This follows from Legendre’s Theorem
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Remark. Fix n > 1. Recall that the binomial coefficient

(;():X(X—l)...(X—n+1)

n!

is a polynomial in X and hence defines a continuous function Z, — Q,. If n = 0, set (z) =1
for all x € Z,.

Now if z € Z>( then (2) € Z. But Z is dense in Z, so by continuity, we must have that
(%) € Z, for all x € Z,,

Proposition 4.1.4. Let C(Z,,Q,) be the Q,-vector space of continuous functions Z, — Q,
equipped with the nomﬂ

LF1] = sup | f(z)],
TELyp
Then || - || is a non-archimidean norm on C(Z,,Q,) and f, — f with respect to || -|| if and

only if fr, = f uniformly. Moreover, C(Z,,Q,) is complete with respect to || - ||.

Proof. 1t is clear that || f|| = O if and only if f = 0 and that || Af|| = |A|,||f]|- The ultrametric
inequality also immediately follows from that for |- |, and so ||-|| is a non-archimidean norm.

The fact that convergence with respect to || - || is equivalent to uniform convergence is
immediate from the definitions. Indeed, the following are equivalent

Ve > 0 3N € N such that Vn > N, |f.(x) — f(x)], < eVx € Z,
Ve > 0 3N € N such that Vn > N, sup |f.(x) — f(z)], <e

TELyp

To show that C(Z,,Q,) is complete, it thus suffices to show that every Cauchy sequence
(fn) in C(Z,,Q,) converges uniformly to some limit in C(Z,,Q,). Given such a sequence
(fn) and z € Z,, (fn(x)) is a Cauchy sequence in Q,. But Q, is complete so this sequence
converges, say to some f(z) € Q,. We claim that this function f, defined pointwise, is the
desired limit of (f,,) in C(Z,,Q,).

To this end, we must first show that f € C(Z,,Q,). By definition, we need to show that
for all € > 0, we can find a § > 0 such that if |z — y|, < J then |f(x) — f(y)|, < . Observe
that

[f (@) = f(W)lp = |F(2) + fulx) = fulz) + fuly) = fuly) = F (W)l
< max{|f(2) = fu(2)|p, | fn(®) = fa(W)lp: [fa(y) = F(@)lp}

Since f, — f pointwise and f, is continuous, we can always find a § that ensures that each
of these three terms is less than . Such a § then ensures that | f(z) — f(y)|, < € as required.

We must now show that f,, — f uniformly. In other words, we need to show that for all
e > 0, there exists N € N such that |f,(z) — f(z)|, < € Vo € Z,. Given m > n we have

(@) = f(@)]p = [fn(2) + frn(2) = fin(2) = f(2)|p < max{|fn(2) = fin(2)]p, [ (2) = f(2)]p}

Now f, is Cauchy and f,, converges to f pointwise so we can always find an N € N that
makes each of these two terms less than . Such an N then ensures that |f,(z) — f(x)], <€
as required. O

3This is well-defined since Z,, is compact and so the supremum exists and is attained.
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Definition 4.1.5. Let ¢y denote the Q,-vector space of sequences (a,)nen in Q, such that
a, — 0 equipped with the norm ||(ay),|| = max,en |an -

Remark. It is clear that ¢y is complete since Q, is itself complete.

Definition 4.1.6. Let A : C(Z,,Q,) — C(Z,.Q,) be the forward difference operator
given by Af(z) = f(z + 1) — f(x). Note that A is clearly a linear operator

Proposition 4.1.7. The linear operator A is norm-decreasing and satisfies

27w = 21 () =

=0

Proof. We have that

[Af@)lp = 1f(z+1) = f(@)], <[If]]

and so [[Af][ < [|f]].
To prove the formula, introduce the forward shift operator Sf(z) = f(z + 1) so that
we can write Af(z) = (S — I)f(x) where I is the identity operator. Then

n n

A”:(S-J)”:Z(?)S"—izz (?)f(:v%—n—z‘)

i=0 i=0
as claimed. n

Definition 4.1.8. Let f € C(Z,,Q,) be a continuous function. We define the n'* Mahler
coefficient of f, denoted a,(f) € Q,, to be

onl$) = 870) = S0/ (1) =)

; i
1=0
Lemma 4.1.9. Let f € C(Z,,Q,) be a continuous function. Then there exists k € N such
k
that ||A7" f]| < JII£II.

Proof. If f = 0 then there is nothing to prove so suppose f is not the 0 function. Moreover,
after scaling, we may assume that ||f|| = 1. We thus need to exhibit a & € N such that
A" f(z) =0 (mod p) for all € Z,. We have that

k

P _ S i7" koo — k
8 (o) = -1 (7 ) o =) = fa 1) = fa) - od )

1=0

since the binomial coefficients are all divisible by p except when i = 0 and i = p*. For this
to be 0 modulo p, we thus require that f(z +p*) — f(2) =0 (mod p).

Now observe that since Z, is compact, f is uniformly continuous on Z, so we can always
find a k € N such that

o —yl, <p™" = |f@@) = fW)p <p™

for all z,y € Z,. In particular, this holds for y = z + p* so we may just choose such a k. [J
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Proposition 4.1.10. Consider the mapping

¢ . C(Zp,@p) — Cp
f e (an(f))nen

The ¢ is an injective norm-decreasing Q,-linear map.

Proof. Qp-linearity of ¢ is immediate from Q,-linearity of A. We now check that ¢ is
well-defined. In other words, we must show that a,(f) — 0 as n — oco. First observe that

[anlp = [A"F(0)], < sup [A"f(2)], = [|A"f]]

€Ly

so that it suffices to show that ||A™f|| — 0 as n — oo. Recall that ||A™f|| is monotonically
decreasing so we only have to find a subsequence of ||A™f|| which converges to 0. But by
Lemma 4.1.9, we can always find a sequence ky, ks, ... of natural numbers such that

jar < Ly g
pn

STk . . .
so the subsequence ||AP~=" || converges to 0 as required. To see that ¢ is norm-decreasing,

observe that
16CHI = [l(an (DI = max|an(f)], < [[A"F]] < |I£]]

We must finally show injectivity. Suppose that a,(f) = 0 for all n € N. By induction, we
have that

f(n) = A"f(0) = an(f) = 0

for all n > 0. Hence f is identically zero on Z>,. Now density and cotinuity imply that f
is identically zero on Z, itself so that ¢ is injective. O

Lemma 4.1.11. Let x € Z, and n € N>;. Then

()65 = 00)

+ =

n n—1 n

Proof. This is true when x € Zsq (this is just Pascal’s Identity) and so, by density and

continuity, it must hold for all z € Z,,. O

Proposition 4.1.12. Conisder the mapping
e — C(Zy,Qyp)

- x
(an)nEN — fa(m) - ;an (n)
Then 1 is a norm-decreasing Q,-linear map such that a,(f,) = a, for all n > 0.

Proof. We first note that this definition is well-defined since the series is uniformly con-
vergent. Moreover, the Q,-linearity is immediate from the definition. To see that v is
norm-decreasing, note that

x

n

>a()

n=0

Y (a)lp =

< sup |an[, = [|al]
p neN

< sup |anl,
neN
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for all x € Z,. In particular, we may pass to the supremum to yield || (a)|| < ||all.
To prove the assertion concerning coefficients let a® = (ag, azy1,...). Then

Afa(x) fa(x+1) _fa(x)

() C)
2

= fow ()

Iterating this process, we see that A*f, = f

a

an(fa) = A"fa(()) = fa(">(0) = Qn

) so that

[]

Lemma 4.1.13. Let V and W be normed spaces and ¢ -V — W op : W — V linear maps
such that ¢ s injective and norm-decreasing, 1 is norm-decreasing and ¢ = idy . Then
Yo =1idy and ¢ and Y are isometries.

Proof. Fixv e V.

O(v = Ydv) = ¢(v) — PYP(v) = ¢(v) — ¢(v) =0

But ¢ is injective so we must have that ¥ ¢(v) = v so that ¥¢ = idy. Moreover

Il = lo()]| = [lg()]| = [[v]]

so we must have equality throughout. Similarly, ||v|| = ||1/(v)|| thereby proving the Lemma.
[l

Theorem 4.1.14 (Mahler’s Theorem). The Q,-vector spaces C(Z,,Q,) and cy are iso-
metric. In particular, every function f € C(Z,,Q,) admits a unique expansion f(x) =

>0 an(})-
Proof. By Propositions [4.1.12] and |4.1.10| we have a pair of maps

@
C(ZP7QP> (T Co

such that ¢ is injective and norm-decreasing, 1 is norm-decreasing and ¢¥¢ = id. Lemma
4.1.13| then implies that ¢ and ¢ are mutually inverse isometries. O]

5 Ramification Theory of Local Fields

From now on, we shall assume that the characteristic of the residue of every local field
is p unless otherwise explicitly stated.
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5.1 Finite Extensions

Remark. Let R be a principal ideal domain and M a finitely generated R-module. Recall
that the Structure Theorem for Finitely Generated Modules over a Principal Ideal Domain
asserts that M = M, ® R™ where M, is the finite torsion part of M and n € N is the
rank of M. Moreover, if N is an R-submodule of M then N is also finitely generated and
N = Nigrs @ R™ for some m <n

Proposition 5.1.1. Let K be a local field and L/K a finite extension of degree n. Then
Oy is a finitely generated free Ox-module of rank n and Fr/Fx is an extension of degree at
most n. Furthermore, L is a local field.

Proof. Fix a K-basis aq,...,a, of L and let || - || denote the max-norm on L. If | -] is
the unique absolute value on L extending the absolute value on K then |- | and || - || are
equivalent as norms on L. We can always find constants » > s > 0 such that

M={zelLllz][<s}cO,C{zellllz]|<r}=N

We may assume, without loss of generality, that r = |a| and s = |b| for some a,b € K*.
Then

M:é(’)[(bai g OL Q éLBOKaai =N

i=1 i=1

But both M and N are finitely generated free Og-modules of rank n so we must also have
that Op is a finitely generated free Ox-module of rank n.

Now, myg = my N Ok since Oy, is the integral closure of Ok in L so we obtain a natural
injection

Fg = OK/mK — OL/mL =Ty

Since O, is generated over Ok by n-elements, Fy is generated by n elements over Fx so
that [FL . IFK] S n.

To see that L is a local field, we must show that it is a complete discrete valuation
field with finite residue field. The latter is immediate as F is finite and F; /Fx is a finite
extension so Fy, must be a local field. Moreover, L is complete by Theorem [2.2.5] Now let
vi be the normalised valuation on K and vy, the unique valuation on L extending vg. Then

1
v (a) = EUK(NL/K(O&))
so that
(LX) C Lo (K¥) = 17
n n
which is discrete. [

Definition 5.1.2. Let L/K be a finite extension of local fields. We define the inertial
degree of L/K to be fr/x = [Fr : Fgl.

Definition 5.1.3. Let L/K be a finite extension of local fields. We define the ramification
index of L/K to be ey x = v(mx) where vy, is the normalised valuation on L and 7k is a
uniformiser for K.
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Theorem 5.1.4. Let L/K be a finite extension of local fields. Then [L : K| = ep/k fr/x
and there ezists a € Ok such that Opla] = Ok.

Proof. To ease notation, write e = ey i and f = fr k. Since F /Fk is a separable extension,
the Primitive Element Theorem implies that there exists @ € Fy such that F;, = Fg(@).
Let f(X) € Fg[X] be the minimal polynomial of @ over F and let f € Ox[X] be a monic
lift of f with deg f = deg f. We claim that there exists a € Oy lifting @ and satisfying
vr(f(a)) = 1 so that f(«) is a uniformiser for L. Fix a lift 5 € Op of @. If v (f(5)) =1
then we are done and set a = (8. If not then set a = 3+ m;, where 7, is the uniformiser for
L. Taylor expanding f(a) around  we have

fla) = f(B+m) = f(B)+ [(B)mr + b}

for some b € Q. From this we see that

vi(f(e)) 2 min{vL(f(8)), ve(f'(8)) + 1,vL(b) + 1}

By assumption, vz (f(5)) > 2 and v, (f'(f)) = 0 since f'(5) is a unit (f is separable so that
f'(B) cannot vanish modulo m). It then follows that vy (f(«)) = 1.

Now write 7 = f(a). We claim that o'z’ fori =0,...,f—1and j =0,...,e—1 are an
Og-basis for Oy,

We first show that the a‘n’ are linearly independent over K. Indeed, suppose we have
> i aa‘m for some a;; € K not all 0. Let s; = Z{:_Ol aija’. Since 1,af,...,af7! are
linearly independent over Ok, their reductions are linearly independent over Fy. Hence
there exists some j such that s; # 0.

We claim that e | vi(s;) if s; # 0. Indeed, let k be an index for which |a;;| is maximal.
Then a,;'s; = S ag; aal. Now, |aga;] <1 and is exactly 1 if and only if 7 = k. Now,
a,;jlsj # 0 (mod 7) since 1,@,...,a’ ! are linearly independent over Fg. Hence a,:jlsj is a
unit whence v(a,;'s;) = 0. Therefore

vr(s;) = vr(ak;) + UL(a,;jlsj) e v (KX) =evp(L*) =eZ

and so e|v(s;) as claimed.

We can now write Z” ajjaiml = Zj;(l) s;m = 0. Suppose that s; # 0 for some j. Then
vr(s;m) = vp(s;) +J € j + eZ. Hence no two terms in the summation can have the same
valuation. This then forces the summation to be non-zero which is a contradiction. Hence
a'm are linearly independent over K.

We now claim that

Or = @ Oralm?

,J

To this end, we make the following definitions

M = @OKOéiﬂ'j

i7j

-1
N = @ OKOéi
1=0
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so that M = N + ;N + --- + 7 'N. Now, 1,@,...,a’"! span F; over Fg so that
O = N 4+ 7wOp. Iterating this, we have
OL:N+7T<N+7TOL)
=N+ 7N +7%(0p)

=N+aN+7*N+- -+ 7N+ 70,

=M + WKOL
where we have used the fact that 7¢ and 7 have the same valuation so that they differ
by a unit. Iterating this process again, we have that O, = M + 7% Oy, for all n > 1. In
particular, O = M + 77Oy, for all n > 1 so that M is dense in Or. Now, M is the closed
unit ball in P,; K a'm C L with respect to the maximum norm on V' (with respect to the

K-basis of L a'n’). Hence M must be complete whence M = Of.
Finally, since o'1? = o’ f(a)? is a polynomial in a, it follows that O = Og|a]. O

Corollary 5.1.5. Let M/L/K be finite extensions of local fields. Then

fuyre = fryefuyc
EM/K = €L/KEM/L
Proof. The statement concerning the inertial degrees is immediate from the Tower Law.

The statement concerning the ramification indices follows from the Tower Law and the fact
that [M . K] = fM/KeM/K~ ]

5.2 Unramified Extensions
Definition 5.2.1. Let L/K be a finite extension of local fields. We say that L/K is
unramified if ey /x = 1 (equivalently, fr,x = [L : K]) and totally ramified if f;/x = 1
(equivalently, fr/x = 1).
Lemma 5.2.2. Let L/K be a finite unramified extension of local fields and let M /K be a
finite extension. Then there is a natural bijection

HOIHK_alg(L, M) — HomFK—alg(FLaFM) (1)
giwen by restriction to Op then reducing.

Proof. Fix a K-algebra homomorphism ¢ : L. — M. By the uniqueness of extended absolute
values, ¢ acts as an isometry of the extended absolute values. In particular, ¢p(Or) C Oy
and ¢(my) € my,. We then get an induced Fg-algebra homomorphism
a Fr — Fuy
[z] = [ip()]
and so we get a homomorphism

HomK,alg(L, M) — Hom]kaalg(FLa FM)

We claim that this homomorphism is bijective. To this end, let @ € F; be a primitive
element of Fj, over F and f(X) € Fg[X] its minimal polynimal. Let f(X) € Okg[X] be a
monic lift of f and o € @y, the unique root of f that lifts @ by Hensel’s Lemma.

Since L is unramified over K, we have that [L : K| = fr/x = [F : Fx] = deg f = deg f.
But f is irreducible over K and so we must have that L = K(«). We thus have the following
diagram
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¢ Homi a1y (L, M) —— Homp,, _ag(Fz, Far) ¢
| | I )
o) {eeM|flz)=0} ™z eFy|f(T)=0} (@)

Now the map in the second row of this diagram is an isomorphism by Hensel’s Lemma
thereby forcing the map in the top row to also be an isomorphism. O

Theorem 5.2.3. Let K be a local field. For every finite extension {/F i there is a unique un-
ramified extension L) K with Fr, = (. Moreover, L/K is Galois with Gal(L/K) = Gal(¢/Fp).

Proof. Fix a primitive element @ of £/Ff with minimal polynomial f[X] € Fx. Let f(X) €
Ok be a monic lift of f such that deg f = deg f. Set L = K(a) where « is a root of f.
Since f is irreducible, it follows that f is irreducible and so [L : k] = [¢ : Fg]. Moreover,
F; contains a root of 7 (namely the reduction of «) so that ¢ — Fj over Fi via @ — «
(mod my). Hence

[L:K|>[Fp:Fg|]>[0:Fg]=[L: K]

Equality must therefore hold throughout so that ¢ = F; and so L is unramified since
[L: K]=1[l:Fg].

To show uniqueness, suppose we have two unramified extensions L and M of the same
degree over K. Then we have an isomorphism of their residue fields ¢ : F;, — F,; which
lifts uniquely to K-embedding ¢ : L — M by Lemma Since [L : K| = [M : K], it
then follows that we must have M = L.

To prove the assertion regarding the Galois groups, note that Lemma also provides
us with an isomorphism Autg (L) — Autg, (Fy) and so

\AutK(L)\ = ]AutFK(IFL)] = [FL : FK] = [L . K]
and so L/K is Galois with Galois group isomorphic to Gal(Fy/Fg). O

Proposition 5.2.4. Let K be a local field and L/K an unramified extension. Let M/K be
a finite extension and fix an algebraic closure K so that L, M C K. Then

1. LM/M s unramified.
2. Any subextension of L/ K is unramified over K.
3. If M/K is unramified then LM /K is unramified.

Proof. Fix a primitive element @ of Fj/Fyx with minimal polynomial f[X] € Fx. Let
f(X) € Ok be a monic lift of f such that deg f = deg f. Then L = K(«) for some root o
of f whence ML = M(«).

Let §(X) € Fy;[X] be the minimal polynomial of @ over Fy;. Then g|f. Hensel’s Lemma
then implies that f admits a factorisation f = gh with g monic and lifting g. Then g(a) =0
and ¢ is irreducible over M[X] so that g is the minimal polynomial of o over M. Then

[LM : M) = [M(a): M] =degg =degqg < [Fra : Fps] < [LM : M|

and so equality must hold throughout whence LM /M is unramified.
To prove the second part, let F' be an intermediate extension of L/K. Then e /x =
er/rer/k- Since er /g = 1 and ramification indices are positive integers, it follows that

eF/K =1.
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For the third assertion, we observe that
since both LM /M and M /K are unramified. O

Corollary 5.2.5. Let L/K be a finite extension of local fields. Then there exists a unique
mazximal unramified intermediate field T of L/ K. Moreover, [T : K| = fr k.

Proof. Fix an algebraic closure K of K and let T be the compositum of all unramified
intermediate extensions of L/ K. Then by Proposition[p.2.4] T'//K is an unramified extension.
We clearly have that [T : K| = fr/x < fr/x by multiplicativity of the inertial degrees. Now
let 7" be the unique unramified extension of K with residue field extension Fj/Fg. Then
the id : Fp» = Fp, — Fy, lifts to a K-embedding 77 — L by Lemma m Then

T:K|>[T':K])= fryx > [T: K]

so equality holds throughout and so we must have that [T": K] = f1 k. O

5.3 Totally Ramified Extensions
Theorem 5.3.1 (Eisenstein’s Criterion). Let K be a local field and f(X) = > ja; X" €

Ok[X] a monic polynomial and 7 a uniformiser for K. If mi|ag, . .., an,_1 but 7% t ag then

f s irreducible.

Proof. Suppose that f € Og[X] is reducible. Then we can write f = gh for some g, h €
Ok[X] monic and non-constant. Reducing modulo 7 we have

gh =7 =Xx"

Fx is an integral domain and so both § and h have zero constant term. This implies that
the constant terms of g and h are both divisible by 7mg. But this would imply that the
constant term of f is divisible by 7% which is a contradiction. m

Proposition 5.3.2. Suppose that L/ K is finite extension of local fields and vk is the nor-
malised valuation on K, w the unique extension of vk to L. Then

ez/lK = w(ny) = min{w(z)|x € mp}

Proof. Let vy, be the normalised valuation on L. Then w and vy differ by a constant - we
claim that such a constant is ei/lK. By definition we have

erL/K = UL(ﬂ'K) — 1= EZ}KUL(WK)

Since w extends vk we necessarily have that w(ng) = 1 so that w(mg) = GZ}K?}L(WK) as
claimed. Hence for all z € L we have w(z) = ez/lKvL(x). In particular for x = 7, we then

have that w(mry) = ez/lK. The final equality in the Proposition follows immediately since w
attains its minimum on 7. ]

Theorem 5.3.3. Let L/K be a totally ramified extension of local fields. Then L = K(my)
and the minimum polynomial of w; over K is an Fisenstein polynomial. Conversely, if
L = K(«) for some primitive element o € L and the minimum polynomial of o over K 1is
FEisenstein then L/ K is totally ramified and « is a uniformiser for L.
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Proof. Write n = [L : K] and denote by v the normalised valuation on K and w the unique
extension of vg to L. Then

S|

() K7 <epd = min w(@)= _min (~log, | Nyx(@)/") <
TEMK (np) /K TEMK (rp,)/ K
since w7, € Mg(r, ). Hence [K(7p) : K| > [L : K] so that L = K(7p,).
Now let f(X) = X"+ a, 1 X" ' + -+ + ap € Og[X] be the minimal polynomial of 7,
over K so that 7} = a9+ a1 +--- + an,mzfl. Then

S

w(n}) = nw(ry) = nez/lK == 1

and on the other hand

w(n}) = wlag + arm + - + a7yt

= Ogrlyélgll_l(v;((a,-) +i/n)
so that vg(ag) = 1 and vk (a;) > 1 for all other coefficients. Hence f is an Eisenstein
polynomial.

Conversely, suppose that L = K(«) where the minimal polynomial f(X) € Okla] of «
over K is an Eisenstein polynomial. Write f(X) = X" + a, 1 X" ' + .-+ 4+ ag. Since f is
irreducible, all the roots of f have the same valuation. Indeed, the roots of f are just the
Galois conjugates of o and the action of Galois is an isometry on the absolute value. Hence

1 =w(ag) = nw(a)

so that w(a) = 1/n. Hence

=[L: K|

S|

GZ}K = féﬁgw@) <

But [L : K] = er/k fr)x so we must have that [L : K| = e;/x = n whence L/K is totally
ramified and « is a uniformiser. O]

Remark. In fact, O = Og[ry].

5.4 Ramification Groups

Definition 5.4.1. Let K be a local field and write Ux = O for its unit group. We define
the higher unit groups of K to be the filtration

L CUR CUY CUY = Uk
where UI({S) =U®) =1+ 730k.
Proposition 5.4.2. Let K be a local field. Then
U ~ X
K/Ulg) > Fx
U(S)
K/U(s+1) =Tk for all s € N>y
K
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Proof. To prove the first isomorphism, note that the natural projection map Ux = O — Fx
is surjective with kernel my =1+ 7 Ok.
To prove the second isomorphism, define a surjective mapping

¢:UY — Fg
1+ 7mix— 2 (mod mg)
We must first check that this is a group homomorphism. Indeed, fix 1+ 75z, 1 +75y € U l(g).
Then
(I +m5ex) (14 75y) = 1+ 7w (2 + y + Treay)

which reduces to x+y modulo 7x so that ¢ is indeed a homomorphism. It’s kernel consists of

those elements that are elements of 1 + 7} (75 )Ox = U ](fﬂ) so the isomorphism follows. [J

Proposition 5.4.3. Let L/K be a finite Galois extension of local fields. Then there exists
a surjective homomorphism Gal(L/K) — Gal(F./Fg).

Proof. Let T/K be the maximal unramified subextension of L/K. By Galois Theory, we
know that the natural map

Gal(L/K) — Gal(T/K)

O or

is a surjection. Moreover, Lemma [5.2.2] gives us a diagram
Gal(L/K) —— Gal(F./Fk)
| |
Gal(T/K) —— Gal(Fr/Fg)
It then follows that the mapping in the first row is a surjection. O

Definition 5.4.4. Let L/K be a finite Galois extension of local fields. We define the inertia
group, denoted I(L/K), to be the kernel of the surjection Gal(L/K) — Gal(Fp/Fg).
Moreover, if T is the maximal unramified subextension in L/K then we call T' the inertia

field of L/K.

Proposition 5.4.5. Let L/K be a finite Galois extension of local fields. Then I(L/K) is
trivial if and only if L is unramified.

Proof. This is immediate since I(L/K) is trivial if and only if Gal(L/K) = Gal(F./Fk) if
and only if L is unramified. O

Lemma 5.4.6. Let L/K be a finite Galois extension of local fields. Let & be the image of
o under the surjective mapping Gal(L/K) — Gal(F./Fg). Then for all x € Fr we have
[7(x)] = o([x]) where [] is the Teichmaller Lift.

Proof. Consider the map

qb L — OL
z = o~ ([7(2)])

Then ¢ is clearly multiplicative and satsifies ¢(x) = x (mod 7). But the Teichmiiller Lift
is the unique map satisfying these properties so we must have that o~ ([a(x)]) = [z] whence

()] = o([x]). O
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From now on, given a local field K, let vx denote the normalised valuation on K.

Definition 5.4.7. Let L/K be a finite Galois of local fields and s > —1 € R. We define
the s-ramification group of L/K to be

Gs(L/K)={0 € Gal(L/K) |vp(o(z) —x) > s+ 1foral x € Op}

Remark. We remark that the higher an s-ramification group that o € Gal(L/K) belongs
to, the less that it ‘moves an element of O around’.

Proposition 5.4.8. Let L/K be a finite Galois extension of local fields. Then
G_1(L/K) = Gal(L/K)
Go =2 I(L/K)
Proof. 1t suffices to unravel the definitions. Indeed
G_1(L/K)={0 € Gal(L/K) |vr(o(z) —x) >0 forall z € O}
= Gal(L/K)
since Oy, is Gal(L/K)-invariant. Moreover
Go={o€Gal(L/K) |vk(o(x) —xz) > 1forallz € O}
={oceGal(L/K)|o(x) =z (modmy) forallz e O}
= I(L/K)
0

Proposition 5.4.9. Let L/ K be a finite Galois extension of local fields and 7y, a uniformiser
of L. Then Gsy1(L/K) is a normal subgroup of Gs(L/K) for all s € N. Moreover, the map

U(S)
¢ . GS(L/K>/GS+1(L/K> — 7L /U£S+1)

o(rr)

TL

1s a well-defined injective group homomorphism which is independent of the choice of uni-
formiser mr,.

Proof. Let ¢ be as defined in the Proposition but without the quotient. We first show that
¢ is well-defined. Indeed, fix 0 € G5(L/K). Then

v(o(rp) —mp) > s+1

so that o(7) = 7 + ﬂi“a: for some = € Or. Hence %L) =1+7°c € Ués).
We next show that ¢ is independent of the choice of uniformiser. Recall that uniformisers
are unique up to multiplication by units. Hence fix a unit u € OF. Then o(u) = u + 75ty

for some y € Op. Then

o(rpu)  (mp+ ) (u+ 75t y)

TLu TLu
= (1 +7mM2)(1+ m5ttuty)
=1+7; (mod U£s+1))

o(mz)

L

(mod U
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We now verify that ¢ is a homomorphism. Indeed,
_o(r(m) _ o(r(m)) 7(me)
L T(r) 7L

(mod U£s+1))

= ¢(0)p(r) (mod UV

where we have used the fact that 7(77) is a uniformiser for L.
It remains to show that ker¢ = G1(L/K). On one hand, comparing definitions, we
have

kerop ={o € G4(L
Gei1(L/K) ={0 € G4(L

/K) [v(o(m) —7) =2 s+ 2}
JK)|v(o(z) —z)>s+2forall z€ O}
so, clearly, G41(L/K) C ker ¢. ‘
Conversely, fix o € ker¢ C I(L/K). Given z € Oy, write x = Y ., nfty[z,|n} where
x, € Fr and [] is the Teichmiiller Lift. Then o(ry,) = 7, + 5%y for some y € O, and so

WE

o() =z =) [zal(o(m)" — )

i
L

[za) (7, + 7 y)" = )

I
M8

Il
i

n

After expanding using the Binomial Theorem, it is then clear that v(o(z) — ) > s — 2 so
that 0 € G441(L/K) as claimed.

It now follows immediately that Gs;1(L/K) is normal in G(L/K) since it is the kernel
of a group homomorphism. O

Corollary 5.4.10. Let L/K be a finite Galois extension of local fields. Then Gal(L/K) is
solvable.

Proof. First observe that

[ GuL/K) =1

36221
so that (G4(L/K))secz,, is a subnormal series of Gal(L/K) by Proposition [5.4.9. Moreover

(s)

G i) = e =

which is abelian for all s > 0. The case where s = —1 is simply Gal(L/K)/I(L/K) =
Gal(F/Fk) which is also abelian. Hence Gal(L/K) is solvable. O

Corollary 5.4.11. Let L/K be a finite Galois extension of local fields and let p = char F.
Then G1(L/K) is a p-group and it is the unique Sylow p-subgroup of Go(L/K) = I1(L/K).

Proof. By Proposition [5.4.9, we have an embedding G4(L/K)/Gs1(L/K) < Fr. Now, F,

is a p-group so the quotient

|Gs(L/K))
|G (L) K]
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is a power of p. In particular, so is the quotient

G1(L/K)|
G (LK)

for any t > 1. But G4(L/K) is trivial for large enough t so that |G;(L/K)| is a power of
p and so is a p-group. To see that it is a Sylow p-subgroup of Go(L/K), note that we also
have an injection

Go(L/K)/G(L/K) — F¥

which has order prime to p so | Gal(L/K')| must be the highest power of p dividing |Go(L/K)|.
Moreover, G1(L/K) is normal in Go(L/K) so by Sylow’s Theorems, G1(L/K) is the unique
Sylow p-subgroup of Go(L/K). ]

Definition 5.4.12. Let L/K be a finite Galois extension of local fields. We call G1(L/K)
the wild inertia group and Gy(L/K)/G1(L/K) the tame quotient.

Proposition 5.4.13. Let M/L/K be finite extensions of local fields with M /K Galois.
Then

Gs(M/K)NnGal(M/L) = G¢(M/L)
Proof. This follows immediately from the definition. Indeed

Gs(M/L)={0 € Gal(M/L) | vy(o(x) —x) > s+ 1forall z € Oy }
=G4(M/K)NGal(M/L)

5.5 Herbrand’s Theorem
Definition 5.5.1. Let L/K be a finite Galois extension of local fields. We define a map
iL/K : Gal(L/K) — ZJ oo

o — min vp(o(x) — x)

Proposition 5.5.2. Let L/K be a finite Galois extension of local fields. Then
Gi(L/K)={0e€Gal(L/K) |irk(c) >s+1}
Proof. This is immediate from the definition of the s-ramification group. O

Proposition 5.5.3. Let L/K be a finite Galois extension of local fields and let o € Op such
that O, = Oklal]. Then for all o € Gal(L/K) we have

ir/k(0) =vi(o(a) — o)

and is independent of the choice of .
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Proof. Choose a 0 € Gal(L/K). Then it is immediate that iz x(0) < v(o(a) —a). We
thus need to show that vz (o(a) —a) <ip/k (o). To this end, fix x € Op. Since Oy is finitely
generated over Ok by 1,a,...,a" !, we can always find a polynomial g(X) =>""  b; X" €
Ok[X] such that 2 = g(«). Since the b; are fixed by Gal(L/K), we then have

ve(o(z) — x) = vr(o(g(a) — g(a))

where we have used the fact that o(a) — alo(a)’ — o for all i > 1 and so we are done.
Moreover, it is clear that this definition is independent of the choice of « since any other
o generating Or, over Ok is necessarily a conjugate of a. O

Corollary 5.5.4. Let M/L/K be finite Galois extensions of local fields. Then
iM/L(U) = ’LM/K(O')
for all 0 € Gal(M/L).

Proof. Suppose that o« € Oy is such that Oy = Okla]. Then also Oy = Opla] so the
Corollary follows immediately. m

Proposition 5.5.5. Let M/L/K be finite extensions of local fields such that M /L and L/ K
are Galois. Then for all 0 € Gal(L/K) we have

i) =eyy D, k(T
reGal(M/K)
T|L=0

Proof. If o is the identity then both sides reduce to co so we may assume that o € Gal(L/K)
is not the identity. Let Oy = Ok[a] and Of, = O[] for some a € Oy and 5 € Of. Then

en/Lin/k(0) = emypvr(o(B) — B) = vm(o(8) — B)

Now, given 7 € Gal(M/K) we have iy/x = vm(7(o) — «). Fix 7 € Gal(M/K) such that
7|r = o and denote H = Gal(M/L). Then

Yo k()= Y wu(r(e) - )

T'eGal(M/K) 7'eGal(M/K)
T'|L=0 T'|L=0
=Y wul(r9)(a) = a)
geEH
= Um (H[(Tg)(a) - Oé])
geH

Label a = [],cyl(79)(a) —a] and b = o(B) — B = 7(8) — B). It suffices to show that
v (b) = vpr(a). A fortiori, it suffices to show that b | @ and a | b.
First observe that if z € O then we can write z = Z?:o 23 for some z; € Og. Then

7(2) — 2 = 30, a(r(B)! — BY) is divisible by 7(8) — 8 =b.
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Now let F(z) € Or[X] be the minimal polynomial of a over L. Explicitly, we can write
F(X) = ngH(X —g(a)). If 7F is the polynomial obtained by applying 7 to each of the
coefficients of F' then we have (7F)(X) = [[,c4(X — (7g)(a)). Then all the coefficients of
TF — F are of the form 7(z) — z for some z € Of so they are thus divisible by b. Hence
b| (tF — F)(«a) = *a.

Conversely, pick f € Ok[X] such that f(«) = f. Since f(a) — 8 = 0, we see that « is a
root of the polynomial f(X) — 3 so, in particular, it is divisible by the minimal polynomial
of a F' so we must have that f(X) — g = F(X)h(x) for some h(z) € Op[X]. Then

(f =78)(X) = (7f = 7B8)(X) = (/)(X) - (h)(X)
Setting X = « we then have that
—b = —78 = (£a)(Th)(a)
so that a | b as claimed. O
Definition 5.5.6. Let L/K be a finite Galois extension of local fields. Define a map
ek (s) = [1,00) = [=1, 00)

by the formula

Nk (s) = eL/lK Z min{iz x(0),s +1} | —1
o€Gal(L/K)

Theorem 5.5.7 (Herbrand’s Theorem). Let M/L/K be finite extensions of local fields with
M/K and L/K Galois. Then

Go(M/K)H /. — G,(L/K)
where t = np/(s) and H = Gal(M/L).

Proof. To ease notation, write G = Gal(M/K). Fix a 0 € Gal(L/K) and let 7 be an
extension of o to M such that iy x(7) > inyr(7g) for all g € H. We claim that

ir/k(0) =1 =nnyn(ingr (1) — 1)

If this were indeed the case then we would have that

. Cs(M/K)H

7 — 7€ G,(M/K)

< ZM/K(T)—lzs

Now, 7 is strictly increasing so

Gs(M/K)H
o€ % < nM/L(ZM/K( ) 1) > nM/L(s)
< 77M/L(ZM ( ) 1) >t
<~ ’LL/K(O' —1>1
1 t+1
<



We now prove the claim iz,x(0) =1 = nar/(in/x (7) —1). Observe that this is equivalent
to showing that

eate > ia(rg) = ey > min{ingn(9), inyx (1)}
geH geH

To demonstrate this, it suffices to show that

vy (Tg) = min{ing 1 (g), in/i (1)}

for all g € H. We have that

im/k(79) = vm((79)(@) — a)

v ((T9)(@) + g(@) — g(a) — a)

> min{va ((79)(e) — g()), var(g(e) — @)}

= min{inyx(7), inryx(9) }

= min{iry(9), in/x (1)}
Now if ip/1(9) < im/i(7) then equality clearly holds throughout by the properties of the
ultrametric inequality. Conversely, if i7/1,(g9) > ia/x(7) then the previous calculation shows
that ik (79) > iy (7). But by assumption we have ip/x(7) > in/x(7g) so we must have

the equality ir/ i (79) > in/r (7).
Hence in either case the claim holds and we are done. O

5.6 Upper Numbering

Proposition 5.6.1. Let L/K be a finite Galois extension of local fields. Then
[ dx
0) = || i) G
where for —1 < x < 0 we take the convention

1
[Go(L/K) : Go(L/K)]

which equals 1 when 1 < x <0 sonpk(s) =sif =1 <5 <0,

= [Go(L/K) - Go(L/K)]

Proof. Denote the integral by 6(s). Since ip k(o) is always an integer, it is clear that
both these functions are piecewise linear and the breakpoints occur at integers. It therefore
suffices to show that both functions agree at a point and have the same derivative away
from the breakpoints. We have

n/x(0) = ez/lK Z min{iz k(o) 1} | =1

ocGal(L/K)
_ HoeGal(l/K) |iyx(o) 21} 1
€L/K

_Go(L/E)|

€L/K
@)

€L/K
=0
= 0(0)
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Now let s € [—1,00) \ Z. Observe that 0, min{z,y} is 0 if z < y and 1 if z > y so by the
Fundamental Theorem of Calculus we have

_ |{oeGal(L/K) |ig/x(o) > s+ 1}]

/
S) =
77L/K< ) L/
[G(L/E)|
|Go(L/K)
B 1
[Go(L/K) : Gs(L/K)]
=0'(s)
O
Remark. Since 7,/x : [1,00) — [1,00) is continuous, strictly increasing and satisfies
N (—1) = =1 and 9/ (s) — 0o as s — oo we see that it is invertible. Write ¢p/x = 77;/11(-

Lemma 5.6.2. Let M/L/K be finite extensions of local fields such that M/K and L/K are
Galois. Then

Nv/k = TL/K ©TM/L

so that

¢M/K = wM/L o ¢L/K
Proof. Let s € [—1,00) and set t = ny/(s) and H = Gal(M/L). By Herbrand’s Theorem,

we have

M/K)H GJ(M/K)  G(M/K)

~ Gs(
G(L/K) = % T HNG,(M/K)  Gy(M/L)

Hence
G(M/K)| _ |G(L/K)||Gs(M/L)|

EM/K €L/K €EM/L

Now, the Fundamental Theorem of Calculus implies that

ot = S0

So that by the Chain Rule we have
My (8) = i Oy (8) = 0y (Mg ()0 () = (s 0 Maaye)' ()
Since 1k and 1k © Ny both agree at 0, these functions must be the same. O

Definition 5.6.3. Let L/K be a finite Galois extension of fields. We define the upper
numbering of the rammification groups to be the groups

Gt(L/K> = GwL/K(t)(L/K)

for t € [1—, 00). We refer to the previous numbering as the lower numbering,.

38



Corollary 5.6.4. Let M/L/K be finite Galois extensions of local fields and H = Gal(M/L).
Given t € [—1,00) we have

G'(M/K)H
H
Proof. Let s =11k (t). By Herbrand’s Theorem we have

~ G'(L/K)

G(M/K)H Gy et
J7; H
= Gy @y (LK)
= GwL/K(t)(L/K)
= Gy(L/K)
= G"(L/K)

5.7 Application to Cyclotomic Fields

We will apply the results of this section in calculating the ramification groups of the
(p™)" cylcotomic field Q,((yn). Indeed, fix a rational prime p and a primitive (p*)™ root of

unity (n € Q.
We first claim that the (p™)" cyclotomic polynomial

D, (X) = xP T =) oxet T e-2) Ly x4

p
is the minimal polynomial of (,» over QQ,. Indeed, we have
X1
X -1

so that, indeed, ®,n((,n) = 0. Note that Q,((m) = Q,(¢m — 1) so it suffices to show that
P, (X + 1) is the minimal polynomial of (,» — 1 over Q,. It is clear that (» — 1 is a root
of this polynomial so we have that

Oy (X)

(X +1" -1 _

XP"=1 (mod p)

From this we see that every coefficient of @, (X + 1) is divisible by p except for the leading
coefficient. Moreover, ®,.(0+4 1) = @, (1) = p so that the constant term is not divisible by
p*. Hence ®,.(X + 1) is Eisenstein at p so it is irreducible. This furthermore implies that
L =Q,(¢n) = Qy(¢m — 1) is totally ramified of degree p"~'(p — 1) with uniformiser (;n — 1
and ring of integers O, = Z,[(n — 1] = Zp[(pn].

We have an isomorphism

(Z4rz) = Gal(1/Q)
me— o,

where o, is the map 0,,(Gn) = (Ji. Fix 0, € Gal(L/K) and s € (0,00). We want to
determine when o, € G4(L/K). We calculate

i), (0m) = v (Om(Gr) — Gn) = v (Ch — Gn) = v (Gn) +oL(Ch' — 1) = v (! — 1)
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since (» is a unit in Op. Note that Q;Z_l is a primitive (p" %)™ for the maximal k such that

p* | m — 1 and that we have a containment of fields K = Q,((,n-+) C L so that (/A" — 1 is
a uniformiser for K. By definition, we have that ey x = UL(C;Z_l —1). But we know that
er/Kk = €r /Qpei}l/@p. Since both extensions are totally ramified, it then follows that

3 n—1 -1
UL(C;Z L 1) = p—f_k_gz()p — i) = Pk

Hence
Om € Gs(L/K) <= ip(op) >s+1 &= p">s+1

Now, since p* | m — 1, it follows that m = 1+ dp* for some integer d. But then o,,((,x) =
C;;dpk = (yr. We thus have that o, € Gal(L/Q,((,x)). Putting all this together, we have
that for all p* < s < p*~' 4+ 1 where s €¢ Nand 1 < k < n — 1, we have

GS(L/@p) = Gal(L/@p(Cpk))

Finally, when s > p"~!, we have that G,(L/K) = 1.

We would now like to transfer this to the upper numbering. We claim that 7, g, (pF—1) =
k so that G*(L/Q,) = Gal(L/Q,(¢,+)). Indeed, the following is the graph of the function
we must integrate to obtain 7 g,

P?(p=1)

pil p2'—1 pS'—l

where we have used the fact that the jumps in the lower numbering are at p* — 1 for
1 <k <n—1. We can verify that this is the case by first calculating

I(L/K) : Gy (L/K)] = ;ﬁ/’i _ p”_;ipj D

and then continuing calculating indices. Then

nL/K(k):]%(p—1)—1-]9(1?—_1)(}92_1—(p—1))+-..+p—k(p_1>
=k

as claimed.

6 Local Class Field Theory

6.1 Infinite Galois Theory

Definition 6.1.1. Let L/K be an algebraic extension of fields. We say that L/K is sep-
arable if for every o € L, the minimal polynomial of o over K is separable. We say that
L/K is normal if the minimal polynomial of o over K splits into linear factors in L[X]

for all @« € L. We say that L/K is Galois if it is normal and separable. If so, we write
Gal(L/K) = Aut(L/K).

40



Definition 6.1.2. Let M/K be a Galois extension. We define the Krull topology on
Gal(M/K) to be the one with basis

{ocGal(M/L)| o € G,L/K is finite }
Proposition 6.1.3. Let M/K be a Galois extension. Then Gal(M/K) is a profinite group’]
Proof. Proof omitted. m
Remark. If M/K is finite then the Krull topology is just the discrete topology.

Definition 6.1.4. Let I be a poset with ordering <. We say that I is a directed system
if for all 7, j € I there exists k € I such that ¢ < k and j < k.

Definition 6.1.5. Let I be a directed system. An inverse system indexed by [ is a
collection of topological groups G; for ¢« € I and continuous homomorphisms f;; : G; — G;
for 4,7 € I such that i < j, f;; =idg, and fir = fij o fjr whenever ¢ < j < k.

Moreover, we define the inverse limit of the system (G;, f;;) to be the topological group
(with the subspace topology coming from the product topology)

m G; = { (gi) € HGi fij(g;) = gi forall i < j }

el el

Proposition 6.1.6. Let M /K be a Galois extension. The set I of finite intermediate Galois
extensions L of M/K is a directed system under inclusion. If L, L' € I with L. C L’ then
we have a map

|7 Gal(L'/K) — Gal(L/K)
Then (Gal(L/K),|¥)rerrcr is an inerse system and the map
Gal(M/K) — l'&lGal(L/K)

Lel

o (o|p)Ler
s an isomorphism of topological groups.
Proof. Proof omitted. O]

Theorem 6.1.7 (Fundamental Theorem of Galois Theory). Let M /K be a Galois exten-
sion. The map L — Gal(M/L) defines an inclusion reversing bijection between intermedi-
ate extensions L/ K of M/K and closed subgroups of Gal(M/K) with inverse H — MY =
{meM|o(m)=m foralloc € H}.

Moreover, L/ K is finite if and only if Gal(M /L) is open in Gal(M/K) and L/ K is Galois
if and only if Gal(M/L) is normal in Gal(M/K) from which we establish an isomorphism

Gal(M/K)
Gal(M/L)

ool

— Gal(L/K)

Proof. Proof omitted. m

4Recall that a topological group is profinite if and only if it is compact Hausdorff and totally disconnected
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6.2 Unramified Extensions and Weil Groups

Definition 6.2.1. Let K be alocal field and M /K an algebraic extension. We say that M /K
is unramified (resp. totally ramified) if L/ K is unramified (resp. totally ramified) for
all finite intermediate extensions L of M /K.

Proposition 6.2.2. Let M/K be an unramified extension of local ﬁeldéﬂ Then M/K is
Galois and Gal(M/K) = Gal(Fy /Fk) via the reduction map.

Proof. Every finite subextension of M /K is unramified and, in particular, Galois so M /K
is Galois as well. We then have a commutative diagram

Gal(M/K) —— Gal(Fy,/Fk)
I |
1'&1 Gal(L/K) —— @ Fr/Fg
L/K L/K
so we must have that the top row is an isomorphism as well. O]

Definition 6.2.3. Let M/K be a finite unramified extension of local fields. We define
the Frobenius element of Gal(M/K), denoted Froby; k, to be the unique element of
Gal(M/K) that acts as Frobenius on IFj; /Fg. Moreover, since Frob, i is compatible with
restriction, we can also define the Frobenius element for arbitrary unramified extensions of
local fields in the exact same way.

Definition 6.2.4. Let K be a local field and M/K a Galois extension. Let 7" = Ty/k be
the maximal unramified subextension of M /K. We define the Weil group of M/K to be

W(M/K) = {0 € Gal(M/K) | o|pr = Frobz,;; for some n € Z }
which comes equipped with the topology induced by the basis
{cGal(L/T) | oc e W(M/K),L/T is finite }
Remark. The above situation is summarised in the following commutative diagram of

topological groups.

Gal(M/T) «—— W(M/K) — Frob

I l /

Gal(M/T) — Gal(M/K) — Gal(T/K)

where Frob% /i 1s equipped with the discrete topology. The topology that the Weil group is
endowed with ensures that this diagram is indeed a commutative diagram in the category
of topological groups.
Proposition 6.2.5. Let K be a local field and M /K a Galois extension. Then W(M/K) is
dense in Gal(M/K). If L/K s a finite subextension of M/K then W(M/L) = W (M/K)N
Gal(M/L). Moreover, if L/K is also Galois then we have an isomorphism
W(M/K)
———— = Gal(L/K
WO o (L/K)

ma restriction.

SNote that an infinite extension of a local field is not necessarily a local field since it may be the case
that the residue field of the extension is infinite.
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Proof. By definition, W(M/K) is dense in Gal(M/K) if and only if for every open subset
U C Gal(M/K) we have W(M/K)NU # &. Recall that

{ocGal(M/L)| o € Gal(M/K), finite L/K }

is a basis for Gal(M/K) so it just suffices to show that for all o € Gal(M/K) and finite
subextensions L/K of M/K we have W(M/K) N o Gal(M/L) # @. But note that by the
Fundamental Theorem of Galois Theory we have

Gal(M/K)

Gala/m) = G/ K)

and the o Gal(M/K) are just the cosets of all such factor groups so it suffices to show that
W(M/K)NGal(L/K) # @ for all finite subextensions L/K. Equivalently, we just need to
show that W (M/K) surjects onto Gal(L/K) for all finite subextensions L/K of M/K.

To this end, let L/K be a finite subextension of M /K. Let T' = Ty;/x be the maximal
unramified subextension of M so that T}, =T N L. Consider the diagram

0 —— Gal(M/T) ——— W(M/K) ———— Frob%,; ———— 0

l | }

0 — Gal(L/(TNL)) — Gal(L/K) —— Gal((TNL)/K) —— 0

where the left hand side is surjective by field theory and the right hand side is surjective
since Gal(Ty/k /K) is finite so is generated by the Frobenius element. The Five Lemma then
implies that we must have a surjection in the middle.

To prove the second assertion, let L/ K be a finite subextension of M/ K so that LTy, /K C
Thrr- Consider the commutative diagram

Froby,, k. — Gal(Tyyx/K) —— Gal(Fyr/Fx)

T I T

Froby,, , i~ Gal(Tayr/L) —— Gal(Fy/Fy)
Which implies that the left-hand vertical map must be an inclusion. Hence
Frob7,, , . = Frobz, e N Gal(Thy/r/L)
Hence if 0 € Gal(M/L) we have that

oceW(M/L) < olr,,, €Froby, 1
< oalr,, €Froby,
— o W(M/K)

Finally, to prove the third assertion, suppose that L/K is a finite Galois subextension
of M/K. Then Gal(M/L) is normal in Gal(M/K) whence Part 2 implies that W(M/L) is
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normal in W(M/K). Then

W(M/K) W(M/K)
W(M/L) ~ W(M/K)N Gal(M/L)
W(M/K)Gal(M/L)
- Gal(M/L)
_ Gal(M/K)
~ Gal(M/L)
~ Gal(L/K)

where the second isomorphism comes from an isomorphism theorem and the third equality
from the fact that the Weil group is dense in the Galois group. O

6.3 Main Theorems of Local Class Field Theory

Definition 6.3.1. Let K be a local field and L/K a Galois extension. We say that L/K is
abelian if Gal(L/K) is abelian.

Proposition 6.3.2. Let L/K and M/K be Galois extensions of fields. Then we have an
imjective group homomorphism

Gal(LM/K) — Gal(L/K) x Gal(M/K)

o (o|p,o|m)
Moreover, this injection is an isomorphism if and only if LN M = K.

Proof. We must first check that this is a group homomorphism. It suffices to show that it
is a homomorphism in each component. To this end, fix 0,7 € Gal(LM/K). We need to
show that (o7)|, = o|L7|r. So fix @ € L so that (o7) () = o7(a) = o(7(v)). Since L/ K is
Galois, we must have that 7(«) € L so that o(7(«)) = o|(7|r()) = (o|p o 7|1)(«) whence
(o7)|r, = o|r o7|p. Similarly, (o7)|p = o|ar o 7|ar so0 it is indeed a group homomorphism.

The kernel is clearly trivial since if ¢ is trivial on L and M then it must be trivial on
LM.

Now, the embedding is an isomorphism if and only if [LM : K] = [L : K|[M : K] or
equivalently, [LM : M] = [L : K]. Consider the restriction homomorphism

Gal(LM/M) — Gal(L/K)

ool

Any automorphism in the kernel of this homomorphism necessarily fixes both L and M so,
in particular, it must fix LM. But the only such automorphism is the trivial one so the
kernel of this homomorphism must be trivial. Now, the image of this map is of the form
Gal(L/E) for some intermediate extension E of L/K. More precisely, E is the subfield of
L fixed by those automorphisms of Gal(LM /M) when restricted to L. Now, an element of
LM is fixed by Gal(LM/M) if and only if it lies in M so the image of the restriction map
is Gal(L/(L N M)). In particular, [LM : M| = [L : L N M| and this is [L : K] if and only if
LNM=K. O

Corollary 6.3.3. Let K be a local field and fiz an algebraic closure K of K. Then there
exists a unique mazimal abelian extension of K inside K. Moreover, K® contains K™, the
mazimal unramified extension of K.
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Proof. Let K2 be the compositum of all abelian extensions of K inside K. Then Proposition
implies that K2 is abelian and it must be the maximal such extension since any other
abelian extension must be contained in K?P,

Let K" = Txser/x € K ab where K*°P is the separable closure of K. Then K" is clearly
the maximal unramified extension of K contained in K®P. O

Theorem 6.3.4 (Local Artin Reciprocity). Let K be a local field. Then there exists a unique
isomorphism of topological groups

Arty : K* — W(K*/K)
called the Artin map such that
1. If Tk is a uniformiser for K and Frobg = Frobguw gk then

Artg(mg) = Frobg
2. If L/K is a finite abelian extension then
Artg (Np/r ()| =idy
3. If M/K s a finite extension of local fields then for all x € M* we have
Artys ()| gav = Art g (Nag/ i ()

4. If M/K is a finite extension of local fields and N(M/K) = Ny (M*) then the Artin

map induces an isomorphism
K~ a
Attt AN (k) — Gal((M N K™)/K)

Proof. To be proven later on. O]

Corollary 6.3.5. Let L/K be a finite extension of local fields. Then
N(L/K) = N((LN K™)/K)
and
K N(L/K)] < [L: K]
with equality if and only if LK is abelian.

Proof. Denote M = L N K*. We then have isomorphisms

K* K~
———— 2 Gal((LNK*)/K) = Gal(M/K) = Gal(M N K*/K) & ————
The second equality is immediate from the same isomorphism. O
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Theorem 6.3.6 (Existence Theorem). Let K be a local field. Then there is a one-to-one
inclusion reversing correspondence

{ open finite-index } PN { finite abelian }

subgroups of K* extensions of K
H— (Kab)ArtK(H)
N(L/K)+— L/K

In particular, given finite abelian extensions L/K and M/K then
N(LM/K)=N(L/K)NN(M/K)
N((L N M)/K) = N(L/K)N(M/K)

Proof. We shall only prove the following aspect of this Theorem. Let L/K be a finite
extension and M/K abelian. Then N(L/K) C N(M/K) if and only if M C L. By
Corollary [6.3.5] we may assume that L is abelian. First suppose that M C L. Then we
have isomorphisms

N(Z—;K) = Gal(M/K) C Gal(L/K) = — K-

(L/K)
so that N(L/K) C N(M/K).
Now assume that N(L/K) C N(M/K). By Galois Theory, it suffices to show that if
o € Gal(K® /L) and |y = idy;. Now since W(K?*/L) is dense in Gal(K?"/L), it suffices
to prove the claim when o € W (K?/L). By Artin Reciprocity we have an isomorphism

W(K®/L) 2 Art(N(L/K)) C Artx (N(M/K))

Hence we can always find € M* such that 0 = Artx (N x(x)). Artin Reciprocity then
also tells us that oy = idyy,. O

7 Lubin-Tate Theory

This section shall be concerned with explicitly constructing the maximal abelian exten-
sion K and the Artin Map Artg.

7.1 Local Class Field Theory for Q,

We first provide a motivating example before continuing on to Lubin-Tate Theory.
Lemma 7.1.1. Let L/K be a finite abelian extension of local fields. Then
er/k =[Ok : Npyx(Or)”]

Proof. Fix x € L*, w the unique valuation on L extending vx and set n = [L : K|. By the
construction of w, we know that

vk (Np/k (7)) = nw(z) = fi/xvr(z)
We then have a surjection
K~ Z
%
N(L/K)  fo/xZ
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It is readily verified that the kernel of this homomorphism is

Ok __ Y%
Ox NN(L/K)  Npk(Or)

By Class Field Theory we have
n=[K":N(L/K)] = fr/x[Of : Nk (OF)]
O

Corollary 7.1.2. Let L/K be a finite abelian extension of local fields. Then L/K is un-
ramified if and only if Np,k(O]) = O.

Let mx be a uniformiser for K so that K* is topologically isomorphic to (rx) x O%. By
the Existence Theorem, abelian extensions of K correspond to open finite-index subgroups
of K*. The groups

() x U

for all m,n > 0 are a basis for the topology of K* so every open finite-index subgroup
of K must contain a subgroup of this form. Hence to find the maximal abelian extension
of K, it suffices to take the compositum of all abelian extensions of K corresponding to
such subgroups. However, we know that N(LM/K) = N(L/K)NN(M/K) so it suffices to
consider subgroups of the form

(mic) x U

<7T7I?> X OK
The extension corresponding to the latter group is easy to understand. By the Corollary,
it is just the unramfied extension of K of degree m. The former is harder to understand
and is what we shall need Lubin-Tate Theory for. In any case, if we write K,,/K for the

extensions of K corresponding to the former groups then we have K2 = K" [ where L is
the union over m of all the K,,.

Lemma 7.1.3. Let K be a local field. Then we have isomorphisms

W(K™®/K)~W(K"“L/K)
>~ W(K™/K) x Gal(L/K)
>~ Frob% x Gal(L/K)

Proof. The first isomorphism follows from the previous discussion. The second follows from
the fact that K®* N L = K since L must be totally ramified. The third is because K" /K is
unramified and, in particular, coincides to its maximal unramified subextension. n

Example 7.1.4. Let K = Q, for some rational prime p and mx = p its uniformiser. Let

Ky = K(Qp((pm))

where (,m is a primitive (p™)*" root of unity in Q,. We first calculate the norm group of
this extension. Recall that (,m» —1 is a uniformiser for this extension and the ring of integers
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of Q,((ym). First observe that Q,({m)* = ({m — 1) X Zp[(m]*. Now, Nk, /k(Gm — 1) =
+®,m (1) = £p. Moreover, Lemma implies that

n=I[Ky,: K= CKpm/K = [OF%  N(Zy[Cm]) ]
So that
N(Kn/K) = Nk, /k(Ky,) = (p) x (1 +p"Zy)

Now define
Qp(Gpee) = U Qp(Gpm)
m=1

which is totally ramified since it is the nested union of totally ramified extensions. Hence
W(Qp(p=)/Qp) = Gal(Q,((p)/Q,). To calculate the latter, we notice that

Gal(Qp(Cp=)/Qp) = hzn Gal(Qp () /Qp)
= (Z/p"Z)"
> 7
It turns out that the inverse of this isomorphism is actually Artg, restricted to Z,'. Explicitly

if m =37 aip' € Z; for some a; € {0,...,p—1} and ag # 0, we have Artg,(m) = oy,
where 0, € Gal(Q,((p)/Q,) acts as

I'c P’ —1
0-m<<—pn) = C;?L = kh—{go CI%:’L:O a;p* — ng-&-al-ﬁ- +an—1p"

We can then read off the full Artin map from the diagram

ArtQp

Q; > W(Q"/Qy) 7

lz lz I
(p) x ZY —— W(Q¥/Q,) x Gal(Q,(G)/Qy) (@loys olep )
(p",m) + > (Frob%p,a;l)

Theorem 7.1.5 (Local Kronecker-Weber Theorem). Given n € Nxq, let ¢, be a primitive
nt" root of unity. Then

@ = JQ(G)
i=1

Q= |J @)
(n,p)=1

Proof. To be proven later on. O

Definition 7.1.6. Let K be a local field, M /K a Galois extension and I the collection of all
finite Galois subextensions of M /K. For all s € [—1, 00) we define the higher ramification

group
G'(M/K)={ce€Gal(M/K) |o|, € G(L/K) forall Le I}
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Remark. Note that we could equivalently define

G*(M/K) = lim G*(L/K)

L/K

Example 7.1.7. Let K = Q, for some rational prime p. We are interested in calculating
GS(QZb /Q,). Let Q,n be the unique unramified extension of Q, of degree n. Completely
analogously to the case for Q,((,m)/Q,, we have

GaIEQpn ECP’”;;QP)) if s =-1

S ] Gal(@n (o) /O i —1<s5<0

Q&) Q) = Gal(@un (Con ) /Qun (C) k=1 <s<k<m—1
1

ifs>m-—1
for k=1,...,m — 1. Recall that by Artin Reciprocity, we have an isomorphism

KX

NQIK) >~ Gal((K* N M)/K)

for any finite extension M of a local field K. Via some clever uses of isomorphism theorems
to determine the quotients, we may thus pass to the Artin map to obtain

CpxU®
Ty x U if s =—1
) xU©
o - if -1 <0
G*(Qpn (Gm) /Qp) = (pn) x U((Z)) : sos
éﬁn;:g(m) ifh—l<s<k<m-—1
(1 ifs>m-—1
Hence
s ab ~ 1: s ~ 1: <pn> X U(k) _ 717(k)
G*(Q°/Qp) = L%IG (Qpn (Gm) /Qp) = I,%W =U

via the Artin map where k is chosen so that £ — 1 < s < k.
Corollary 7.1.8. Let L/Q, be a finite abelian extension. Then
N(L/@»UW)

N(L/Q,)

where k —1 < s < k. In particular, L C Qpn({m) for some n if and only if G*(L/Q,) = 1
for all s >m — 1.

G (L/Q,) = Artq, (

7.2 Formal Groups

Definition 7.2.1. Let R be a ring. A formal group over R is a formal power series
F(X,Y) € R[[X,Y]] such that

1. F(X,Y)=X+Y (mod X2, XY,Y?)

2. F(X,Y) = F(Y, X)
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3. F(X,F(Y,Z)) = F(F(X,Y),Z) in R[[X,Y, Z]]

Example 7.2.2. Let F' be a formal group over Ok where K is a complete valued field.
Then F(X,Y) converges for all x,y € mg so that my is a group under the multiplication
operation

(z,y) = F(z,y)
Example 7.2.3. @(X, Y) = X +Y is the formal additive group.

Example 7.2.4. @;(X, Y)=X+Y + XY is the formal multiplicative group. Note that
X+Y+XY =(1+X)1+Y)—1so0if K is a complete valued field then m = 1 +m
via z — 1 + = and the rule (x,y) — = + y + zy is just the usual multiplication on 1 + m
transported to m.

Lemma 7.2.5. Let R be a ring and F' a formal group over R. Then
1. F(X,0)=X
2. There exists i(X) € R[[X]] such that F(X,i(X)) =0

Proof. We first claim that, given any formal power series g(X) =3 .., ;X" € R[[X]] such
that g(X) = a; X (mod X?) for some a; € R, there exists a power series h(X) € R[[X]]
such that g(h(X)) = X. To do this, we shall inducitively construct polynomials h, (X) =
S b; X" such that g(h(X)) = (mod X™™). We then obtain the desired power series as
h = lim,, e h,(X) which is well-defined since R[X] is X-adically complete.

Indeed, suppose that n = 1. Then we may set hy(X) = b X with by = a=!. Then,
clearly, g(h;(X)) = X (mod X?). Now assume that we have constructed h,_;(X) such
that g(h, 1(X)) = X (mod X™). Then g(h, (X)) = X + ¢, X" (mod X" for some
¢, € R. Now consider

ho(X) = Byt (X) + by X"

We have
hE (X)) if k>1

n+1
he (X) 4+ b X it k=1 (mod X

Pn(X)F = (hp_ i (X) + 0, X™)F = {

So we have

9(ha(X)) = axhn(X)* = " ap(hn-a(X) + b X™F = " aghf | + ab, X"
k>1 k>1 k>1
=X+, X"+ a1b, X"
So we may take b, = —aflcn and we are done.
Now, to prove the first assertion, write f(X) = F(X,0). Then f(f(X)) = F(F(X,0),0) =
F(X,F(0,0)) = F(X,0) = f(X). Now, by the claim, there exists h(X) € R[X] such that
f(h(X)) = X. Then

F(X,0) = f(X) = F(f(h(X)) = fF(h(X)) = X

To prove the second assertion, first observe that by the first assertion and symmetricity,
we have

FX,Y)= ) ap,X"Y"

m,n>1
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As in the proof of the claim, we shall construct i4(X) by induction such that i(X) =
Sk ;X with by = —1 and

F(X,ix(X)) =0 (mod XF+)

We will then take i(X) = limy_, o i (X).
First suppose that k = 1. Set i1(X) = —X. Then

F(X,-X)=X+(-X)+ Y anaX"(-X)"=0 (mod X

mn>1

Now suppose that we have constructed i,_1(X). Set ix(X) = ix_1 + b X*. We have
X1 (X) + 0, XF)" = X™ip_1(X)™  (mod XF+1)

so that

P(X,ip(X)) = X —ip(X) + 0 X5+ ) 0 X" (i1 (X) + 5, X*)

n,m>1

= X — i1 (X) + 0, X% > X™ip_y(X)" (mod XM
n,m>1

= F(X,ip1) + b, X" (mod X*t1)
Now, F(X,i;_1) =0 (mod X)* so F(X,i_1) = . X% (mod X*+1) so
F(X,ix(X)) = X" + b, X" (mod X*)
so we can just take b, = —c, and we are done. O

Definition 7.2.6. Let R be a ring and F, G formal groups over R. We define a homomor-
phism of formal groups f : ' — G to be a formal power series f € R[[X]] such that
f(X)=0 mod X

FF(X,Y)) = G(f(X), f(Y))

Remark. Let F' be a formal group over a ring R. The endomorphisms f : ' — F form a
ring Endg(F) with addition +x given by (f +r ¢)(X) = F(f(X), g(X)) and multiplication

(f o g)(X) = f(g(X)).

Definition 7.2.7. Let O be a ring. By a formal O-module we mean a formal group F
over O together with a ring homomorphism

HF 0 — EIld(9<F)
such that for all @ € O we have [a]p(X) = aX (mod X?).

Definition 7.2.8. Let K be a local field. We define a Lubin-Tate module over O, with
respect to a uniformiser 7, to be a formal Og-module F' such that

[7]r(X)=X? (mod 7)

where ¢ = |Fg|. In other words, 7 acts as Frobenius on F'.
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Example 7.2.9. @; is a Lubin-Tate module over Z, with respect to p. Indeed, if a € Z,,
define

g, (X) = (14 X)" ~ 1 = i (4)x

First note that [a]e (X) = aX (mod X)?. To see that this is infact a ring homomorphism,
we note that we have the identities ((1+X)%)? = (1+X)® and (1+X)%(1+X)? = (1+ X)%®
by the usual continuity and density arguments (they hold for Z). Then

e, (0= 3 (7)x = X7 (o

Hence @; is a Lubin-Tate module.

Definition 7.2.10. Let K be a local field with uniformiser 7x and ¢ = |Fx|. A Lubin-Tate
series for 7w is a formal power series e(X) € Ok [X] such that e(X) = 17X (mod X?)
and e(X) = X9 (mod 7g). We let &, denote the set of all Lubin-Tate series for mx. A
Lubin-Tate polynomial is a Lubin-Tate series of the form

uX? + WK(aq_l)Xq_l + -4 CL2X2) -+ ’/TKX

for some unit v € U[((l) and ag,...,a,-1 € Ok.

Remark. Note that if F' is a Lubin-Tate Ok module for mx then 7]k is a Lubin-Tate series
for mg.

Proposition 7.2.11. Let K be a local field and wg a uniformiser for K. Let e;, ey €
Exye be Lubin-Tate series for mr and a linear form L(Xq,...,X,) = >0 a; X" for some
a; € Ok. Then there exists a formal power series F(Xi,...,X,) € Og[[Xi,..., X,]]
such that F(Xy,...,X,) = L(Xy,...,X,) (mod (X1,...,X,)?) and e1(F(X4,...,X,)) =
F(@Q(Xl), e 7€Q(Xn)).

Proof. Proof omitted. m

Corollary 7.2.12. Let K be a local field and 7k a uniformiser for K. Given a Lubin-Tate
series e € &, there exists a unique power series F(X,Y) € Og[[X, Y]] such that

TK

F(X,)Y)=X+Y (mod (X,Y)?)
e(Fe(X,Y))) = Fe(e(X), e(Y))

Corollary 7.2.13. Let K be a local field and 7 a uniformiser for K. Given Lubin-Tate
series, e1,es € Er. and a € Ok, there exists a unique power series [a)e, ., (X) € Ok[[X]]
such that

[@]ey.er(X) = aX  (mod X?)
e1([ale;e; (X)) = [ale e, (€2(X))

Moreover, if ey = ey = e then we write [a] = [a]ce.

52



Theorem 7.2.14. Let K be a local field with uniformiser mg. Then the Lubin-Tate O-
modules are precisely the series F.(X,Y) with e € &, with formal Ox-module structure
given by

a v |ale

Moreover, if e1,es € &, and a € Ok then [ale, e, S a homomorphism Fey — Fey. If
a € OF then it is an isomorphism with inverse [a "], ., -

Proof. The proof of this theorem is lengthy but not hard, it amounts to using the uniqueness

of all formal power series involved. [

7.3 Lubin-Tate Extensions

Throughout this section, let K be a fixed algebraic closure of a local field K and m = mz
the unique maximal ideal of its ring of integers.

Proposition 7.3.1. Let K be a local field. If F is a formal Og-module then m is an
O -module under the operations

v4rpy=F(ry) forz,yem
a-z=lalp(x) fora € O,z em

Proof. If z,y € m then F(x,y) is a power series in K (x,y) C K with coefficients of absolute
value less than 1. Since K(z,y) is complete, this series thus converges to an alement of
Mg (zy) © M. The rest of the assertions are now immediate from the definitions of formal
groups. O

Definition 7.3.2. Let K be a local field with uniformiser 7x and F' a Lubin-Tate module
for mg. Given n € N>y, we define the group of wj-division points of I’ to be

Fn)={zemp|ngz=0}

Example 7.3.3. Let K = Q, with 7 = p and consider the Lubin-Tate Z,-module F'. Given
x € F we have

prrr=(1+2) —1=0
so that 1+ z is a (p") root of unity. In other words,
Gum(n)={¢.—1]0<i<p"—1}

where (,n is a primitive (p™)" root of unity. We thus see that ((/};(n) generates Q,((pn).

Lemma 7.3.4. Let K be a local field with uniformiser i and q = |Fg|. Let e(X) =
X1+ 71X and f,(X)=e€o---0e with fo(X) = X. Then f, has no repeated roots.

Proof. Fix x € K. We claim, by induction on n, that if |f;(z)] < 1 forall 0 <i <n —1
then f!(z) # 0. Indeed, first assume that n = 1. Then

filz) =€ (@) = 2" + g = 7k (1 n (i) qu)

TK
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Now, |¢/mx| < 1 since ¢ = 0 (mod 7g) and |277!| < 1 by hypothesis so f](z) cannot
possibly vanish.
Now assume it holds true for arbitrary n. We have

i) = ol + ) ) = mc (14 () @) £

By assumption, |f,(z)97!| < 1 and f/(X) # 0 by the induction hypothesis so that f,,1(z)
does not vanish.

To prove the lemma, assume that f,(z) = 0. We claim that |f;(z)] < 1 for all 0 < i <
n— 1. If this were indeed the case then we would have that f/ (X) # 0 by the claim. Indeed,
by induction we have that

fa(X) = X7 + 1ga(X)

for some ¢,(X) € Ok. If f,(z) = 0 then we must have that |z| < 1 whence |fi(z) < 1 for
all 7. ]

Proposition 7.3.5. Let K be a local field, mx a uniformiser for K and q = |Fg|. If F
is a Lubin-Tate Ok-module for i then F(n) is a free O /n"Og-module of rank 1. In
particular, it has q" elements.

Proof. By Theorem|[7.2.14] all Lubin-Tate Ok-modules are isomorphic so all the O g-modules
F(n) are isomorphic. Now, by definition, 7" F(n) = 0 and so the Ox-module structure on
F(n) descends to a Ok /1" Ox-module structure. Now let F' = F, where e(X) = X9+ 7X.
Then F(n) consists of the roots of the degree ¢™ polynomial f,(X) = e™*(X) which has no
repeated roots by Lemma so |F(n)| = q¢"™

Now fix A, € F((n) \ F(n —1). Then we have a homomorphism of Og-modules

OK—>F(H)
ar—a- A\,

whose kernel is exactly 7"Ok. But |Og/n"Ok| = ¢" = |F(n)| so this must be infact an
isomorphism. O

Corollary 7.3.6. Let K be a local field and 7 a uniformiser for K. If F' is a Lubin-Tate
Ok -module for mg then
Ok n0, = Bndo, (F(n))
Uk = Auto, (F(n))
K
Definition 7.3.7. Let K be a local field, mx a uniformiser for K and F' a Lubin-Tate

Ogr-module for mg. We define the field of n%.-division points of F' to be L, . = L,, =

Remark. Let F and G be two Lubin-Tate Ox-modules for mx. Then K(G(n)) = K(F(n)).
Indeed, there exits an isomorphism of formal Og-modules f : FF — G. Then G(n) =
F(F(n)) C K(F(n)). By symmetry, K(G(n)) C K(F(n))

Theorem 7.3.8. Let K be a local field, m = 7w a uniformiser and F a Lubin-Tate O-
module for mx. Then L, ./K is a totally ramified abelian extension of degree ¢"~*(q — 1)
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with Galois group Aute, (F(n)) = UK/UI((n). More explicitly, given o € Gal(L,,/K) there
exists a unique u € UK/UI((") such that

o(A) = [u]p(X) for all X € F(n)

Moreover, if F = F, where e(X) = X9+ m(ag1 X7 4+ -+ + asX?) + 71X is a Lubin-Tate
polynomial and X\, € F(n)\F(n — 1) then \, is a uniformiser of L, and

e"(X)

— x4 4 ...
e"—l(X) + +

(I)n(X) =

is the minimal polynomial of N, and, in particular, N, jx(—X,) = 7.
Finally, the above isomorphism induces an isomorphism

U(”)

for all m > n.

Proof. Fix a Lubin-Tate polynomial
e(X) = X"+ m(ag 1 X9+ + apX?) + 71X
and set F' = F,. Then

e"(X)

BARLTEIr

= [e" X))+ (aga e X))+ ape" TN (X))

is Eisenstein at 7 and is of degree ¢"~'(¢ — 1). If A\, € F(n) \ F(n — 1) then )\, is a root of
®,(X) so that K(\,)/K is totally ramified of degree ¢"~1(q — 1) and ), is a uniformiser of
this extension with Ng )/ x(An) = 7.

Now fix ¢ € Gal(L,/K). Then o induces a permutation of F(n) which is Og-linear.
Indeed,

o(x) +roly) = Fo(z),0(y)) = o(F(z,y) = oz +ry)
o(a-x) = o(lalp(z)) = [dr(o(z) = a-o(z)

for all x,y € my and a € Og. We thus have an injective homomorphism
Gal(Ly/ K) —— Auto, (F(n)) = UK /0
But by Proposition [5.4.2 we have

=¢"q¢—1)=[K(\): K| <|[L,: K] =|Gal(L,/K)|

UK/U’@

so we must have equality throughout so that Gal(L, /K) = Uk /U [((" ) and, moreover, K (M) =
L,.
To prove the final assertion, note that we have a commutative diagram

Gal(Ly,/K) —— UK/U
Pt
Gal(L,/K) —— UK/U
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It is then clear that
U(n)
Gal(L,,/L,) = ker ¢ = kerp = K/U(m)
K

O

Theorem 7.3.9. Let K be a local field and 7k a uniformiser for K. Then the m}.-division
field L,, has norm group

N(Ln/K) = (m) x U

Theorem 7.3.10 (Local Kronecker-Weber Theorem). Let K be a local field and 7k a
uniformiser for K. If Lo, denotes the union of all w%-division fields then K* = K™ L.

Proof. Proof omitted. O

Theorem 7.3.11. Let K be a local field and wx a uniformiser for K. Then we have a
topological isomorphism Arty completing the diagram

K~ o W(K™/K) o
I ) l
() x Uy —=—= W(K™/K) x Gal(Lo/K) (olk,0olr.)
(™ u) > (Frob}, o ')

where o, is characterised by o,(X) = [u]p(X) for any X € ;2 F(n).
Proof. Proof omitted. O]

7.4 Ramification Groups of Lubin-Tate Extensions

Theorem 7.4.1. Let K be a local field with uniformiser m = wx and q = |Fg|. Then

Gal(L,/K) if —1<s<0
Gy(L,/K)=1{ Gal(L,/Ly) if¢d"'-1<s<¢"-1,1<k<n-1
1 if s>qv !t —1

Proof. Since L, /K is totally ramified, Gal(L,,/K) coincides with its inertia subgroup so the
case where —1 < s < 0 is clear. Now suppose that 0 < s < 1. Since jump-points occur
at integers, it suffices to determine G1(L/K). By Corollary GYL/K) is a p-Sylow
subgroup of Gal(L,/K) = UK/UI(?). This group has order ¢" (¢ — 1) so that G4(L,/K)
is the unique subgroup of order ¢"~!. But this is exactly Ul(g)/U[({") ~ Gal(L,/L1) so the
Theorem is true in this case. [

Now fix 1 #u € U[((l)/Ugl) and let o, € G1(L,,/K) be the corresponding automorphism.
Write u = 1+ en* for some € € Ug and 1 < k = k(u) < n. Fix a Lubin-Tate Ox-module F
for g and A € F(n) \ F(n —1). Then A is a uniformiser for L, and so O, = Og[A]. We
claim that iz, /x(0u) = v, (0(X) = A) = ¢". Indeed, we have

ou(N) = [ulr(N) = [1+ex]p(N) = F(\, [en*]())
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Now,

[em*]p () = [e]r([7*]r(N) € F(n = k)\F(n —k —1)

so that [em¥]p()\) is a uniformiser for L, . Since L,/L,_; is totally ramified of degree ¢*

we must have that
[er*]p(A) = egA?"

for some ¢ € Of . Now recall that F(X,0) = X and F'(0,Y) =Y so that F(X,Y) =
X+Y +XYG(X,Y) for some G(X,Y) € Ok so we have

o(A) = A\) = F(\, [en*]r(\]) — A
= F(\eoA") — A
= A+ 200 4 £0AT TGN, £0AT) — A
= 2oA” + oA TLG(N, £0A7)
so that

i,k =vr,(0(A) = A) =¢"

Hence

iLn/K(au) >s+1 «— qk(u)—lgs

and therefore

Go(Ln/K) ={0, € G1(L,/K) | ¢*™ —1> s}
[ Gal(L,/Ly) if¢"t<s<¢"—1,k=1,...,n—1
11 if s >¢"t—1
Corollary 7.4.2. Let K be a local field with uniformiser m = mx and q = |Fg|. Then

Gal(L,/K) if —1<t<0
G'(L,/K)=1{ Gal(L,/Ly) ifk—1<t<k,1<k<n-1

1 ift>n—1
_J Gal(Ln/L) if —1<t<n-1
11 ift>n—1

where we set L_1 = Lo = K.

Proof. The function we need to integrate in order to obtain 7y, /x(s) is
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After a moment’s glance, we see that

s if —1<s<0
S (qkil - ) r k1 k
k—1)+ f <s< -1
ML,k (8) = ( ) q’“‘(l(q - 1) ) R ==
s—(q" : _
n—1)+ if s > ¢t
( ) " g —1)
Inverting this, we have
t if —1<t<0
Yoo =4 ¢ g—1)E—([t]-1)+¢t1—1 if1<t<n-1
" Hg—-1D(t—(n—1)+q¢ -1 ift>n—1
Then
Gt(Ln/K) = GwLn/K(t)(Ln/K)
is in the form asserted. O

Corollary 7.4.3. Let K be a local field. Then

L) |
At (G Lo /K)) =4 U if —1<t<n-1
1 ift>n—1

Lemma 7.4.4. Let L/K be a finite unramified extension of local fields and M /K a finite
totally ramified extension. Then LM /L is totally ramified and Gal(LM /L) = Gal(M/K) via
restriction to M. Moreover, GY(LM/K) = G*(M/K) via this isomorphism when t > —1.

Proof. Since L/K is unramified and M/K is totally ramified, we have L N M = K. Propo-
sition [6.3.2 then implies that we have an isomorphism

Gal(LM/K) = Gal(L/K) x Gal(M/K)
But by Galois Theory, we have an isomorphism

Gal(LM/K)

Gal(LM/L) - ClL/K)

We must therefore have that
Gal(LM/L) = {1} x Gal(M/K) = Gal(M/K)
The statement regarding the ramification groups is then immediately clear. O
Corollary 7.4.5. Let K be a local field and t > —1. Then
G' (K™ /K) = Gal(K* /K" L)
and

Art (GHK™ /K)) = UR'Y
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Proof. Let K,,/K be the unique unramified extension of K of degree m. By Lemma
and Corollary we have

GHKpLn/K) = G (L, /K) = { ?al(Ln/L[t]) if —1<t<n-1

ift>n—1
Now, L, /Ly is itself a totally ramified extension and K, L /Ly is unramified. Hence
Lemma [7.4.4] again imples that
Gal( Ko Lo L/ Kon L)) = Gal(Ko L / K L)) 2 Gal(Ly/ Lir)
So that

Gal(Kan/KmLm) if —1<t<n-1

Gt(Kan/K):{l if t>n—1

Hence
G'(K*™/K) = G" (K" Lo/ K)
= lim G* (K, L,/ K)

= lim Gal(Ky,Ly/Km L)
n>[t]

= Cal(K™ Lo /K™ Liy)

= Gal(K™ /K" L)

Moreover,

Art ! (Gal(K™ /K™ L)) & Arty! lim Gal(Ky,Ly/KyLq)
n>1t]
= lim Arty (Gal(KyLn /Ky L))
n>1t]

Uy

t])
= % /Ul((n)
n>]t]
~ ([
m
Corollary 7.4.6. Let L/K be a finite abelian extension of local fields. Then we have an
1somorphism
KX

Moreover, fort > —1 we have

GY(L/K) = Artg (UfgmN(L/K))

N(L/K)
Proof. By Herbrand’s theorem, the upper numbering on ramification groups is compatible
with quotients so we have

t _ GYK™/K)G(K™/L) ULV N(L/K)
CLIR) = =5k 1) ‘A“K< N(L/K)

29
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